162 lines
3.8 KiB
Go
162 lines
3.8 KiB
Go
|
// Copyright 2010 The draw2d Authors. All rights reserved.
|
||
|
// created: 17/05/2011 by Laurent Le Goff
|
||
|
|
||
|
package draw2d
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
CurveRecursionLimit = 32
|
||
|
)
|
||
|
|
||
|
// Cubic
|
||
|
// x1, y1, cpx1, cpy1, cpx2, cpy2, x2, y2 float64
|
||
|
|
||
|
// Subdivide a Bezier cubic curve in 2 equivalents Bezier cubic curves.
|
||
|
// c1 and c2 parameters are the resulting curves
|
||
|
func SubdivideCubic(c, c1, c2 []float64) {
|
||
|
// First point of c is the first point of c1
|
||
|
c1[0], c1[1] = c[0], c[1]
|
||
|
// Last point of c is the last point of c2
|
||
|
c2[6], c2[7] = c[6], c[7]
|
||
|
|
||
|
// Subdivide segment using midpoints
|
||
|
c1[2] = (c[0] + c[2]) / 2
|
||
|
c1[3] = (c[1] + c[3]) / 2
|
||
|
|
||
|
midX := (c[2] + c[4]) / 2
|
||
|
midY := (c[3] + c[5]) / 2
|
||
|
|
||
|
c2[4] = (c[4] + c[6]) / 2
|
||
|
c2[5] = (c[5] + c[7]) / 2
|
||
|
|
||
|
c1[4] = (c1[2] + midX) / 2
|
||
|
c1[5] = (c1[3] + midY) / 2
|
||
|
|
||
|
c2[2] = (midX + c2[4]) / 2
|
||
|
c2[3] = (midY + c2[5]) / 2
|
||
|
|
||
|
c1[6] = (c1[4] + c2[2]) / 2
|
||
|
c1[7] = (c1[5] + c2[3]) / 2
|
||
|
|
||
|
// Last Point of c1 is equal to the first point of c2
|
||
|
c2[0], c2[1] = c1[6], c1[7]
|
||
|
}
|
||
|
|
||
|
// TraceCubic generate lines subdividing the cubic curve using a Flattener
|
||
|
// flattening_threshold helps determines the flattening expectation of the curve
|
||
|
func TraceCubic(t Flattener, cubic []float64, flattening_threshold float64) {
|
||
|
// Allocation curves
|
||
|
var curves [CurveRecursionLimit * 8]float64
|
||
|
copy(curves[0:8], cubic[0:8])
|
||
|
i := 0
|
||
|
|
||
|
// current curve
|
||
|
var c []float64
|
||
|
|
||
|
var dx, dy, d2, d3 float64
|
||
|
|
||
|
for i >= 0 {
|
||
|
c = curves[i*8:]
|
||
|
dx = c[6] - c[0]
|
||
|
dy = c[7] - c[1]
|
||
|
|
||
|
d2 = math.Abs((c[2]-c[6])*dy - (c[3]-c[7])*dx)
|
||
|
d3 = math.Abs((c[4]-c[6])*dy - (c[5]-c[7])*dx)
|
||
|
|
||
|
// if it's flat then trace a line
|
||
|
if (d2+d3)*(d2+d3) < flattening_threshold*(dx*dx+dy*dy) || i == len(curves)-1 {
|
||
|
t.LineTo(c[6], c[7])
|
||
|
i--
|
||
|
} else {
|
||
|
// second half of bezier go lower onto the stack
|
||
|
SubdivideCubic(c, curves[(i+1)*8:], curves[i*8:])
|
||
|
i++
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Quad
|
||
|
// x1, y1, cpx1, cpy2, x2, y2 float64
|
||
|
|
||
|
// Subdivide a Bezier quad curve in 2 equivalents Bezier quad curves.
|
||
|
// c1 and c2 parameters are the resulting curves
|
||
|
func SubdivideQuad(c, c1, c2 []float64) {
|
||
|
// First point of c is the first point of c1
|
||
|
c1[0], c1[1] = c[0], c[1]
|
||
|
// Last point of c is the last point of c2
|
||
|
c2[4], c2[5] = c[4], c[5]
|
||
|
|
||
|
// Subdivide segment using midpoints
|
||
|
c1[2] = (c[0] + c[2]) / 2
|
||
|
c1[3] = (c[1] + c[3]) / 2
|
||
|
c2[2] = (c[2] + c[4]) / 2
|
||
|
c2[3] = (c[3] + c[5]) / 2
|
||
|
c1[4] = (c1[2] + c2[2]) / 2
|
||
|
c1[5] = (c1[3] + c2[3]) / 2
|
||
|
c2[0], c2[1] = c1[4], c1[5]
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Trace generate lines subdividing the curve using a Flattener
|
||
|
// flattening_threshold helps determines the flattening expectation of the curve
|
||
|
func TraceQuad(t Flattener, quad []float64, flattening_threshold float64) {
|
||
|
// Allocates curves stack
|
||
|
var curves [CurveRecursionLimit * 6]float64
|
||
|
copy(curves[0:6], quad[0:6])
|
||
|
i := 0
|
||
|
// current curve
|
||
|
var c []float64
|
||
|
var dx, dy, d float64
|
||
|
|
||
|
for i >= 0 {
|
||
|
c = curves[i*6:]
|
||
|
dx = c[4] - c[0]
|
||
|
dy = c[5] - c[1]
|
||
|
|
||
|
d = math.Abs(((c[2]-c[4])*dy - (c[3]-c[5])*dx))
|
||
|
|
||
|
// if it's flat then trace a line
|
||
|
if (d*d) < flattening_threshold*(dx*dx+dy*dy) || i == len(curves)-1 {
|
||
|
t.LineTo(c[4], c[5])
|
||
|
i--
|
||
|
} else {
|
||
|
// second half of bezier go lower onto the stack
|
||
|
SubdivideQuad(c, curves[(i+1)*6:], curves[i*6:])
|
||
|
i++
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// TraceArc trace an arc using a Flattener
|
||
|
func TraceArc(t Flattener, x, y, rx, ry, start, angle, scale float64) (lastX, lastY float64) {
|
||
|
end := start + angle
|
||
|
clockWise := true
|
||
|
if angle < 0 {
|
||
|
clockWise = false
|
||
|
}
|
||
|
ra := (math.Abs(rx) + math.Abs(ry)) / 2
|
||
|
da := math.Acos(ra/(ra+0.125/scale)) * 2
|
||
|
//normalize
|
||
|
if !clockWise {
|
||
|
da = -da
|
||
|
}
|
||
|
angle = start + da
|
||
|
var curX, curY float64
|
||
|
for {
|
||
|
if (angle < end-da/4) != clockWise {
|
||
|
curX = x + math.Cos(end)*rx
|
||
|
curY = y + math.Sin(end)*ry
|
||
|
return curX, curY
|
||
|
}
|
||
|
curX = x + math.Cos(angle)*rx
|
||
|
curY = y + math.Sin(angle)*ry
|
||
|
|
||
|
angle += da
|
||
|
t.LineTo(curX, curY)
|
||
|
}
|
||
|
return curX, curY
|
||
|
}
|