migrating to new curve package

This commit is contained in:
Laurent Le Goff 2015-04-23 10:05:48 +02:00
parent 216d3f60dd
commit 4b3ba53f4c
16 changed files with 192 additions and 178 deletions

2
arc.go
View file

@ -33,7 +33,7 @@ func arc(t VertexConverter, x, y, rx, ry, start, angle, scale float64) (lastX, l
curY = y + math.Sin(angle)*ry curY = y + math.Sin(angle)*ry
angle += da angle += da
t.Vertex(curX, curY) t.AddPoint(curX, curY)
} }
return curX, curY return curX, curY
} }

View file

@ -32,7 +32,7 @@ func TraceArc(t LineTracer, x, y, rx, ry, start, angle, scale float64) {
curY = y + math.Sin(angle)*ry curY = y + math.Sin(angle)*ry
angle += da angle += da
t.LineTo(curX, curY) t.AddPoint(curX, curY)
} }
t.LineTo(curX, curY) t.AddPoint(curX, curY)
} }

View file

@ -12,12 +12,12 @@ const (
CurveRecursionLimit = 32 CurveRecursionLimit = 32
) )
// x1, y1, cpx1, cpx2, cpx2, cpy2, x2, y2 float64 // x1, y1, cpx1, cpy1, cpx2, cpy2, x2, y2 float64
type CubicCurveFloat64 [8]float64 // type Cubic []float64
// Subdivide a Bezier cubic curve in 2 equivalents Bezier cubic curves. // Subdivide a Bezier cubic curve in 2 equivalents Bezier cubic curves.
// c1 and c2 parameters are the resulting curves // c1 and c2 parameters are the resulting curves
func (c *CubicCurveFloat64) Subdivide(c1, c2 *CubicCurveFloat64) { func SubdivideCubic(c, c1, c2 []float64) {
// First point of c is the first point of c1 // First point of c is the first point of c1
c1[0], c1[1] = c[0], c[1] c1[0], c1[1] = c[0], c[1]
// Last point of c is the last point of c2 // Last point of c is the last point of c2
@ -46,21 +46,21 @@ func (c *CubicCurveFloat64) Subdivide(c1, c2 *CubicCurveFloat64) {
c2[0], c2[1] = c1[6], c1[7] c2[0], c2[1] = c1[6], c1[7]
} }
// Trace generate lines subdividing the curve using a LineTracer // TraceCubic generate lines subdividing the cubic curve using a LineTracer
// flattening_threshold helps determines the flattening expectation of the curve // flattening_threshold helps determines the flattening expectation of the curve
func (curve *CubicCurveFloat64) Trace(t LineTracer, flattening_threshold float64) { func TraceCubic(t LineTracer, cubic []float64, flattening_threshold float64) {
// Allocation curves // Allocation curves
var curves [CurveRecursionLimit]CubicCurveFloat64 var curves [CurveRecursionLimit * 8]float64
curves[0] = *curve copy(curves[0:8], cubic[0:8])
i := 0 i := 0
// current curve // current curve
var c *CubicCurveFloat64 var c []float64
var dx, dy, d2, d3 float64 var dx, dy, d2, d3 float64
for i >= 0 { for i >= 0 {
c = &curves[i] c = curves[i*8:]
dx = c[6] - c[0] dx = c[6] - c[0]
dy = c[7] - c[1] dy = c[7] - c[1]
@ -69,11 +69,11 @@ func (curve *CubicCurveFloat64) Trace(t LineTracer, flattening_threshold float64
// if it's flat then trace a line // if it's flat then trace a line
if (d2+d3)*(d2+d3) < flattening_threshold*(dx*dx+dy*dy) || i == len(curves)-1 { if (d2+d3)*(d2+d3) < flattening_threshold*(dx*dx+dy*dy) || i == len(curves)-1 {
t.LineTo(c[6], c[7]) t.AddPoint(c[6], c[7])
i-- i--
} else { } else {
// second half of bezier go lower onto the stack // second half of bezier go lower onto the stack
c.Subdivide(&curves[i+1], &curves[i]) SubdivideCubic(c, curves[(i+1)*8:], curves[i*8:])
i++ i++
} }
} }

View file

@ -1,35 +1,36 @@
package curve package curve
import ( import (
"bufio"
"fmt" "fmt"
"image" "image"
"image/color" "image/color"
"image/draw" "image/draw"
"image/png"
"log" "log"
"os" "os"
"testing" "testing"
"github.com/llgcode/draw2d"
"github.com/llgcode/draw2d/raster" "github.com/llgcode/draw2d/raster"
) )
var ( var (
flattening_threshold float64 = 0.5 flattening_threshold float64 = 0.5
testsCubicFloat64 = []CubicCurveFloat64{ testsCubicFloat64 = []float64{
CubicCurveFloat64{100, 100, 200, 100, 100, 200, 200, 200}, 100, 100, 200, 100, 100, 200, 200, 200,
CubicCurveFloat64{100, 100, 300, 200, 200, 200, 300, 100}, 100, 100, 300, 200, 200, 200, 300, 100,
CubicCurveFloat64{100, 100, 0, 300, 200, 0, 300, 300}, 100, 100, 0, 300, 200, 0, 300, 300,
CubicCurveFloat64{150, 290, 10, 10, 290, 10, 150, 290}, 150, 290, 10, 10, 290, 10, 150, 290,
CubicCurveFloat64{10, 290, 10, 10, 290, 10, 290, 290}, 10, 290, 10, 10, 290, 10, 290, 290,
CubicCurveFloat64{100, 290, 290, 10, 10, 10, 200, 290}, 100, 290, 290, 10, 10, 10, 200, 290,
} }
testsQuadFloat64 = []QuadCurveFloat64{ testsQuadFloat64 = []float64{
QuadCurveFloat64{100, 100, 200, 100, 200, 200}, 100, 100, 200, 100, 200, 200,
QuadCurveFloat64{100, 100, 290, 200, 290, 100}, 100, 100, 290, 200, 290, 100,
QuadCurveFloat64{100, 100, 0, 290, 200, 290}, 100, 100, 0, 290, 200, 290,
QuadCurveFloat64{150, 290, 10, 10, 290, 290}, 150, 290, 10, 10, 290, 290,
QuadCurveFloat64{10, 290, 10, 10, 290, 290}, 10, 290, 10, 10, 290, 290,
QuadCurveFloat64{100, 290, 290, 10, 120, 290}, 100, 290, 290, 10, 120, 290,
} }
) )
@ -37,16 +38,8 @@ type Path struct {
points []float64 points []float64
} }
func (p *Path) LineTo(x, y float64) { func (p *Path) AddPoint(x, y float64) {
if len(p.points)+2 > cap(p.points) { p.points = append(p.points, x, y)
points := make([]float64, len(p.points)+2, len(p.points)+32)
copy(points, p.points)
p.points = points
} else {
p.points = p.points[0 : len(p.points)+2]
}
p.points[len(p.points)-2] = x
p.points[len(p.points)-1] = y
} }
func init() { func init() {
@ -59,7 +52,7 @@ func init() {
defer f.Close() defer f.Close()
log.Printf("Create html viewer") log.Printf("Create html viewer")
f.Write([]byte("<html><body>")) f.Write([]byte("<html><body>"))
for i := 0; i < len(testsCubicFloat64); i++ { for i := 0; i < len(testsCubicFloat64)/8; i++ {
f.Write([]byte(fmt.Sprintf("<div><img src='_test%d.png'/></div>\n", i))) f.Write([]byte(fmt.Sprintf("<div><img src='_test%d.png'/></div>\n", i)))
} }
for i := 0; i < len(testsQuadFloat64); i++ { for i := 0; i < len(testsQuadFloat64); i++ {
@ -87,32 +80,32 @@ func drawPoints(img draw.Image, c color.Color, s ...float64) image.Image {
} }
func TestCubicCurve(t *testing.T) { func TestCubicCurve(t *testing.T) {
for i, curve := range testsCubicFloat64 { for i := 0; i < len(testsCubicFloat64); i += 8 {
var p Path var p Path
p.LineTo(curve[0], curve[1]) p.AddPoint(testsCubicFloat64[i], testsCubicFloat64[i+1])
curve.Trace(&p, flattening_threshold) TraceCubic(&p, testsCubicFloat64[i:], flattening_threshold)
img := image.NewNRGBA(image.Rect(0, 0, 300, 300)) img := image.NewNRGBA(image.Rect(0, 0, 300, 300))
raster.PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, curve[:]...) raster.PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, testsCubicFloat64[i:i+8]...)
raster.PolylineBresenham(img, image.Black, p.points...) raster.PolylineBresenham(img, image.Black, p.points...)
//drawPoints(img, image.NRGBAColor{0, 0, 0, 0xff}, curve[:]...) //drawPoints(img, image.NRGBAColor{0, 0, 0, 0xff}, curve[:]...)
drawPoints(img, color.NRGBA{0, 0, 0, 0xff}, p.points...) drawPoints(img, color.NRGBA{0, 0, 0, 0xff}, p.points...)
draw2d.SaveToPngFile(fmt.Sprintf("test_results/_test%d.png", i), img) SaveToPngFile(fmt.Sprintf("test_results/_test%d.png", i/8), img)
log.Printf("Num of points: %d\n", len(p.points)) log.Printf("Num of points: %d\n", len(p.points))
} }
fmt.Println() fmt.Println()
} }
func TestQuadCurve(t *testing.T) { func TestQuadCurve(t *testing.T) {
for i, curve := range testsQuadFloat64 { for i := 0; i < len(testsQuadFloat64); i += 6 {
var p Path var p Path
p.LineTo(curve[0], curve[1]) p.AddPoint(testsQuadFloat64[i], testsQuadFloat64[i+1])
curve.Trace(&p, flattening_threshold) TraceQuad(&p, testsQuadFloat64[i:], flattening_threshold)
img := image.NewNRGBA(image.Rect(0, 0, 300, 300)) img := image.NewNRGBA(image.Rect(0, 0, 300, 300))
raster.PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, curve[:]...) raster.PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, testsQuadFloat64[i:i+6]...)
raster.PolylineBresenham(img, image.Black, p.points...) raster.PolylineBresenham(img, image.Black, p.points...)
//drawPoints(img, image.NRGBAColor{0, 0, 0, 0xff}, curve[:]...) //drawPoints(img, image.NRGBAColor{0, 0, 0, 0xff}, curve[:]...)
drawPoints(img, color.NRGBA{0, 0, 0, 0xff}, p.points...) drawPoints(img, color.NRGBA{0, 0, 0, 0xff}, p.points...)
draw2d.SaveToPngFile(fmt.Sprintf("test_results/_testQuad%d.png", i), img) SaveToPngFile(fmt.Sprintf("test_results/_testQuad%d.png", i), img)
log.Printf("Num of points: %d\n", len(p.points)) log.Printf("Num of points: %d\n", len(p.points))
} }
fmt.Println() fmt.Println()
@ -120,10 +113,32 @@ func TestQuadCurve(t *testing.T) {
func BenchmarkCubicCurve(b *testing.B) { func BenchmarkCubicCurve(b *testing.B) {
for i := 0; i < b.N; i++ { for i := 0; i < b.N; i++ {
for _, curve := range testsCubicFloat64 { for i := 0; i < len(testsCubicFloat64); i += 8 {
p := Path{make([]float64, 0, 32)} var p Path
p.LineTo(curve[0], curve[1]) p.AddPoint(testsCubicFloat64[i], testsCubicFloat64[i+1])
curve.Trace(&p, flattening_threshold) TraceCubic(&p, testsCubicFloat64[i:], flattening_threshold)
} }
} }
} }
// SaveToPngFile create and save an image to a file using PNG format
func SaveToPngFile(filePath string, m image.Image) error {
// Create the file
f, err := os.Create(filePath)
if err != nil {
return err
}
defer f.Close()
// Create Writer from file
b := bufio.NewWriter(f)
// Write the image into the buffer
err = png.Encode(b, m)
if err != nil {
return err
}
err = b.Flush()
if err != nil {
return err
}
return nil
}

View file

@ -7,13 +7,12 @@ import (
"math" "math"
) )
//x1, y1, cpx1, cpy2, x2, y2 float64 // x1, y1, cpx1, cpy2, x2, y2 float64
type QuadCurveFloat64 [6]float64 // type Quad [6]float64
// Subdivide a Bezier quad curve in 2 equivalents Bezier quad curves. // Subdivide a Bezier quad curve in 2 equivalents Bezier quad curves.
// c1 and c2 parameters are the resulting curves // c1 and c2 parameters are the resulting curves
func (c *QuadCurveFloat64) Subdivide(c1, c2 *QuadCurveFloat64) { func SubdivideQuad(c, c1, c2 []float64) {
// First point of c is the first point of c1 // First point of c is the first point of c1
c1[0], c1[1] = c[0], c[1] c1[0], c1[1] = c[0], c[1]
// Last point of c is the last point of c2 // Last point of c is the last point of c2
@ -32,17 +31,17 @@ func (c *QuadCurveFloat64) Subdivide(c1, c2 *QuadCurveFloat64) {
// Trace generate lines subdividing the curve using a LineTracer // Trace generate lines subdividing the curve using a LineTracer
// flattening_threshold helps determines the flattening expectation of the curve // flattening_threshold helps determines the flattening expectation of the curve
func (curve *QuadCurveFloat64) Trace(t LineTracer, flattening_threshold float64) { func TraceQuad(t LineTracer, quad []float64, flattening_threshold float64) {
// Allocates curves stack // Allocates curves stack
var curves [CurveRecursionLimit]QuadCurveFloat64 var curves [CurveRecursionLimit * 6]float64
curves[0] = *curve copy(curves[0:6], quad[0:6])
i := 0 i := 0
// current curve // current curve
var c *QuadCurveFloat64 var c []float64
var dx, dy, d float64 var dx, dy, d float64
for i >= 0 { for i >= 0 {
c = &curves[i] c = curves[i*6:]
dx = c[4] - c[0] dx = c[4] - c[0]
dy = c[5] - c[1] dy = c[5] - c[1]
@ -50,11 +49,11 @@ func (curve *QuadCurveFloat64) Trace(t LineTracer, flattening_threshold float64)
// if it's flat then trace a line // if it's flat then trace a line
if (d*d) < flattening_threshold*(dx*dx+dy*dy) || i == len(curves)-1 { if (d*d) < flattening_threshold*(dx*dx+dy*dy) || i == len(curves)-1 {
t.LineTo(c[4], c[5]) t.AddPoint(c[4], c[5])
i-- i--
} else { } else {
// second half of bezier go lower onto the stack // second half of bezier go lower onto the stack
c.Subdivide(&curves[i+1], &curves[i]) SubdivideQuad(c, curves[(i+1)*6:], curves[i*6:])
i++ i++
} }
} }

View file

@ -2,5 +2,6 @@ package curve
// LineTracer is an interface that help segmenting curve into small lines // LineTracer is an interface that help segmenting curve into small lines
type LineTracer interface { type LineTracer interface {
LineTo(x, y float64) // AddPoint a point
AddPoint(x, y float64)
} }

View file

@ -88,7 +88,7 @@ func recursiveQuadraticBezierBezier(v VertexConverter, x1, y1, x2, y2, x3, y3 fl
// we tend to finish subdivisions. // we tend to finish subdivisions.
//---------------------- //----------------------
if angleTolerance < CurveAngleToleranceEpsilon { if angleTolerance < CurveAngleToleranceEpsilon {
v.Vertex(x123, y123) v.AddPoint(x123, y123)
return return
} }
@ -102,7 +102,7 @@ func recursiveQuadraticBezierBezier(v VertexConverter, x1, y1, x2, y2, x3, y3 fl
if da < angleTolerance { if da < angleTolerance {
// Finally we can stop the recursion // Finally we can stop the recursion
//---------------------- //----------------------
v.Vertex(x123, y123) v.AddPoint(x123, y123)
return return
} }
} }
@ -128,7 +128,7 @@ func recursiveQuadraticBezierBezier(v VertexConverter, x1, y1, x2, y2, x3, y3 fl
} }
} }
if d < distanceToleranceSquare { if d < distanceToleranceSquare {
v.Vertex(x2, y2) v.AddPoint(x2, y2)
return return
} }
} }
@ -209,12 +209,12 @@ func recursiveCubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4 floa
} }
if d2 > d3 { if d2 > d3 {
if d2 < distanceToleranceSquare { if d2 < distanceToleranceSquare {
v.Vertex(x2, y2) v.AddPoint(x2, y2)
return return
} }
} else { } else {
if d3 < distanceToleranceSquare { if d3 < distanceToleranceSquare {
v.Vertex(x3, y3) v.AddPoint(x3, y3)
return return
} }
} }
@ -225,7 +225,7 @@ func recursiveCubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4 floa
//---------------------- //----------------------
if d3*d3 <= distanceToleranceSquare*(dx*dx+dy*dy) { if d3*d3 <= distanceToleranceSquare*(dx*dx+dy*dy) {
if angleTolerance < CurveAngleToleranceEpsilon { if angleTolerance < CurveAngleToleranceEpsilon {
v.Vertex(x23, y23) v.AddPoint(x23, y23)
return return
} }
@ -237,14 +237,14 @@ func recursiveCubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4 floa
} }
if da1 < angleTolerance { if da1 < angleTolerance {
v.Vertex(x2, y2) v.AddPoint(x2, y2)
v.Vertex(x3, y3) v.AddPoint(x3, y3)
return return
} }
if cuspLimit != 0.0 { if cuspLimit != 0.0 {
if da1 > cuspLimit { if da1 > cuspLimit {
v.Vertex(x3, y3) v.AddPoint(x3, y3)
return return
} }
} }
@ -256,7 +256,7 @@ func recursiveCubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4 floa
//---------------------- //----------------------
if d2*d2 <= distanceToleranceSquare*(dx*dx+dy*dy) { if d2*d2 <= distanceToleranceSquare*(dx*dx+dy*dy) {
if angleTolerance < CurveAngleToleranceEpsilon { if angleTolerance < CurveAngleToleranceEpsilon {
v.Vertex(x23, y23) v.AddPoint(x23, y23)
return return
} }
@ -268,14 +268,14 @@ func recursiveCubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4 floa
} }
if da1 < angleTolerance { if da1 < angleTolerance {
v.Vertex(x2, y2) v.AddPoint(x2, y2)
v.Vertex(x3, y3) v.AddPoint(x3, y3)
return return
} }
if cuspLimit != 0.0 { if cuspLimit != 0.0 {
if da1 > cuspLimit { if da1 > cuspLimit {
v.Vertex(x2, y2) v.AddPoint(x2, y2)
return return
} }
} }
@ -290,7 +290,7 @@ func recursiveCubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4 floa
// we tend to finish subdivisions. // we tend to finish subdivisions.
//---------------------- //----------------------
if angleTolerance < CurveAngleToleranceEpsilon { if angleTolerance < CurveAngleToleranceEpsilon {
v.Vertex(x23, y23) v.AddPoint(x23, y23)
return return
} }
@ -309,18 +309,18 @@ func recursiveCubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4 floa
if da1+da2 < angleTolerance { if da1+da2 < angleTolerance {
// Finally we can stop the recursion // Finally we can stop the recursion
//---------------------- //----------------------
v.Vertex(x23, y23) v.AddPoint(x23, y23)
return return
} }
if cuspLimit != 0.0 { if cuspLimit != 0.0 {
if da1 > cuspLimit { if da1 > cuspLimit {
v.Vertex(x2, y2) v.AddPoint(x2, y2)
return return
} }
if da2 > cuspLimit { if da2 > cuspLimit {
v.Vertex(x3, y3) v.AddPoint(x3, y3)
return return
} }
} }

View file

@ -28,7 +28,7 @@ func (dasher *DashVertexConverter) NextCommand(cmd VertexCommand) {
} }
} }
func (dasher *DashVertexConverter) Vertex(x, y float64) { func (dasher *DashVertexConverter) AddPoint(x, y float64) {
switch dasher.command { switch dasher.command {
case VertexStartCommand: case VertexStartCommand:
dasher.start(x, y) dasher.start(x, y)
@ -40,7 +40,7 @@ func (dasher *DashVertexConverter) Vertex(x, y float64) {
func (dasher *DashVertexConverter) start(x, y float64) { func (dasher *DashVertexConverter) start(x, y float64) {
dasher.next.NextCommand(VertexStartCommand) dasher.next.NextCommand(VertexStartCommand)
dasher.next.Vertex(x, y) dasher.next.AddPoint(x, y)
dasher.x, dasher.y = x, y dasher.x, dasher.y = x, y
dasher.distance = dasher.dashOffset dasher.distance = dasher.dashOffset
dasher.currentDash = 0 dasher.currentDash = 0
@ -60,12 +60,12 @@ func (dasher *DashVertexConverter) lineTo(x, y float64) {
ly := dasher.y + k*(y-dasher.y) ly := dasher.y + k*(y-dasher.y)
if dasher.currentDash%2 == 0 { if dasher.currentDash%2 == 0 {
// line // line
dasher.next.Vertex(lx, ly) dasher.next.AddPoint(lx, ly)
} else { } else {
// gap // gap
dasher.next.NextCommand(VertexStopCommand) dasher.next.NextCommand(VertexStopCommand)
dasher.next.NextCommand(VertexStartCommand) dasher.next.NextCommand(VertexStartCommand)
dasher.next.Vertex(lx, ly) dasher.next.AddPoint(lx, ly)
} }
d = d - rest d = d - rest
dasher.x, dasher.y = lx, ly dasher.x, dasher.y = lx, ly
@ -75,12 +75,12 @@ func (dasher *DashVertexConverter) lineTo(x, y float64) {
dasher.distance = d dasher.distance = d
if dasher.currentDash%2 == 0 { if dasher.currentDash%2 == 0 {
// line // line
dasher.next.Vertex(x, y) dasher.next.AddPoint(x, y)
} else { } else {
// gap // gap
dasher.next.NextCommand(VertexStopCommand) dasher.next.NextCommand(VertexStopCommand)
dasher.next.NextCommand(VertexStartCommand) dasher.next.NextCommand(VertexStartCommand)
dasher.next.Vertex(x, y) dasher.next.AddPoint(x, y)
} }
if dasher.distance >= dasher.dash[dasher.currentDash] { if dasher.distance >= dasher.dash[dasher.currentDash] {
dasher.distance = dasher.distance - dasher.dash[dasher.currentDash] dasher.distance = dasher.distance - dasher.dash[dasher.currentDash]

View file

@ -16,8 +16,8 @@ func (dc *DemuxConverter) NextCommand(cmd VertexCommand) {
converter.NextCommand(cmd) converter.NextCommand(cmd)
} }
} }
func (dc *DemuxConverter) Vertex(x, y float64) { func (dc *DemuxConverter) AddPoint(x, y float64) {
for _, converter := range dc.converters { for _, converter := range dc.converters {
converter.Vertex(x, y) converter.AddPoint(x, y)
} }
} }

View file

@ -20,7 +20,7 @@ func (vertexAdder *VertexAdder) NextCommand(cmd VertexCommand) {
vertexAdder.command = cmd vertexAdder.command = cmd
} }
func (vertexAdder *VertexAdder) Vertex(x, y float64) { func (vertexAdder *VertexAdder) AddPoint(x, y float64) {
switch vertexAdder.command { switch vertexAdder.command {
case VertexStartCommand: case VertexStartCommand:
vertexAdder.adder.Start(raster.Point{raster.Fix32(x * 256), raster.Fix32(y * 256)}) vertexAdder.adder.Start(raster.Point{raster.Fix32(x * 256), raster.Fix32(y * 256)})

View file

@ -4,74 +4,73 @@
package draw2d package draw2d
import ( import (
"github.com/llgcode/draw2d/curve"
"math" "math"
) )
type PathConverter struct { type PathConverter struct {
converter VertexConverter converter VertexConverter
ApproximationScale, AngleTolerance, CuspLimit float64 ApproximationScale float64
startX, startY, x, y float64 startX, startY, x, y float64
} }
func NewPathConverter(converter VertexConverter) *PathConverter { func NewPathConverter(converter VertexConverter) *PathConverter {
return &PathConverter{converter, 1, 0, 0, 0, 0, 0, 0} return &PathConverter{converter, 1, 0, 0, 0, 0}
} }
func (c *PathConverter) Convert(paths ...*PathStorage) { func (c *PathConverter) Convert(paths ...*PathStorage) {
for _, path := range paths { for _, path := range paths {
j := 0 i := 0
for _, cmd := range path.commands { for _, cmd := range path.commands {
j = j + c.ConvertCommand(cmd, path.vertices[j:]...) switch cmd {
case MoveTo:
c.x, c.y = path.vertices[i], path.vertices[i+1]
c.startX, c.startY = c.x, c.y
c.converter.NextCommand(VertexStopCommand)
c.converter.NextCommand(VertexStartCommand)
c.converter.AddPoint(c.x, c.y)
i += 2
case LineTo:
c.x, c.y = path.vertices[i], path.vertices[i+1]
if c.startX == c.x && c.startY == c.y {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.AddPoint(c.x, c.y)
c.converter.NextCommand(VertexJoinCommand)
i += 2
case QuadCurveTo:
curve.TraceQuad(c.converter, path.vertices[i-2:], 0.5)
c.x, c.y = path.vertices[i+2], path.vertices[i+3]
if c.startX == c.x && c.startY == c.y {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.AddPoint(c.x, c.y)
i += 4
case CubicCurveTo:
curve.TraceCubic(c.converter, path.vertices[i-2:], 0.5)
c.x, c.y = path.vertices[i+4], path.vertices[i+5]
if c.startX == c.x && c.startY == c.y {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.AddPoint(c.x, c.y)
i += 6
case ArcTo:
c.x, c.y = arc(c.converter, path.vertices[i], path.vertices[i+1], path.vertices[i+2], path.vertices[i+3], path.vertices[i+4], path.vertices[i+5], c.ApproximationScale)
if c.startX == c.x && c.startY == c.y {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.AddPoint(c.x, c.y)
i += 6
case Close:
c.converter.NextCommand(VertexCloseCommand)
c.converter.AddPoint(c.startX, c.startY)
}
} }
c.converter.NextCommand(VertexStopCommand) c.converter.NextCommand(VertexStopCommand)
} }
} }
func (c *PathConverter) ConvertCommand(cmd PathCmd, vertices ...float64) int { func (c *PathConverter) convertCommand(cmd PathCmd, vertices ...float64) int {
switch cmd {
case MoveTo:
c.x, c.y = vertices[0], vertices[1]
c.startX, c.startY = c.x, c.y
c.converter.NextCommand(VertexStopCommand)
c.converter.NextCommand(VertexStartCommand)
c.converter.Vertex(c.x, c.y)
return 2
case LineTo:
c.x, c.y = vertices[0], vertices[1]
if c.startX == c.x && c.startY == c.y {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.Vertex(c.x, c.y)
c.converter.NextCommand(VertexJoinCommand)
return 2
case QuadCurveTo:
quadraticBezier(c.converter, c.x, c.y, vertices[0], vertices[1], vertices[2], vertices[3], c.ApproximationScale, c.AngleTolerance)
c.x, c.y = vertices[2], vertices[3]
if c.startX == c.x && c.startY == c.y {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.Vertex(c.x, c.y)
return 4
case CubicCurveTo:
cubicBezier(c.converter, c.x, c.y, vertices[0], vertices[1], vertices[2], vertices[3], vertices[4], vertices[5], c.ApproximationScale, c.AngleTolerance, c.CuspLimit)
c.x, c.y = vertices[4], vertices[5]
if c.startX == c.x && c.startY == c.y {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.Vertex(c.x, c.y)
return 6
case ArcTo:
c.x, c.y = arc(c.converter, vertices[0], vertices[1], vertices[2], vertices[3], vertices[4], vertices[5], c.ApproximationScale)
if c.startX == c.x && c.startY == c.y {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.Vertex(c.x, c.y)
return 6
case Close:
c.converter.NextCommand(VertexCloseCommand)
c.converter.Vertex(c.startX, c.startY)
return 0
}
return 0 return 0
} }
@ -80,7 +79,7 @@ func (c *PathConverter) MoveTo(x, y float64) *PathConverter {
c.startX, c.startY = c.x, c.y c.startX, c.startY = c.x, c.y
c.converter.NextCommand(VertexStopCommand) c.converter.NextCommand(VertexStopCommand)
c.converter.NextCommand(VertexStartCommand) c.converter.NextCommand(VertexStartCommand)
c.converter.Vertex(c.x, c.y) c.converter.AddPoint(c.x, c.y)
return c return c
} }
@ -94,7 +93,7 @@ func (c *PathConverter) LineTo(x, y float64) *PathConverter {
if c.startX == c.x && c.startY == c.y { if c.startX == c.x && c.startY == c.y {
c.converter.NextCommand(VertexCloseCommand) c.converter.NextCommand(VertexCloseCommand)
} }
c.converter.Vertex(c.x, c.y) c.converter.AddPoint(c.x, c.y)
c.converter.NextCommand(VertexJoinCommand) c.converter.NextCommand(VertexJoinCommand)
return c return c
} }
@ -105,12 +104,12 @@ func (c *PathConverter) RLineTo(dx, dy float64) *PathConverter {
} }
func (c *PathConverter) QuadCurveTo(cx, cy, x, y float64) *PathConverter { func (c *PathConverter) QuadCurveTo(cx, cy, x, y float64) *PathConverter {
quadraticBezier(c.converter, c.x, c.y, cx, cy, x, y, c.ApproximationScale, c.AngleTolerance) curve.TraceQuad(c.converter, []float64{c.x, c.y, cx, cy, x, y}, 0.5)
c.x, c.y = x, y c.x, c.y = x, y
if c.startX == c.x && c.startY == c.y { if c.startX == c.x && c.startY == c.y {
c.converter.NextCommand(VertexCloseCommand) c.converter.NextCommand(VertexCloseCommand)
} }
c.converter.Vertex(c.x, c.y) c.converter.AddPoint(c.x, c.y)
return c return c
} }
@ -120,12 +119,12 @@ func (c *PathConverter) RQuadCurveTo(dcx, dcy, dx, dy float64) *PathConverter {
} }
func (c *PathConverter) CubicCurveTo(cx1, cy1, cx2, cy2, x, y float64) *PathConverter { func (c *PathConverter) CubicCurveTo(cx1, cy1, cx2, cy2, x, y float64) *PathConverter {
cubicBezier(c.converter, c.x, c.y, cx1, cy1, cx2, cy2, x, y, c.ApproximationScale, c.AngleTolerance, c.CuspLimit) curve.TraceCubic(c.converter, []float64{c.x, c.y, cx1, cy1, cx2, cy2, x, y}, 0.5)
c.x, c.y = x, y c.x, c.y = x, y
if c.startX == c.x && c.startY == c.y { if c.startX == c.x && c.startY == c.y {
c.converter.NextCommand(VertexCloseCommand) c.converter.NextCommand(VertexCloseCommand)
} }
c.converter.Vertex(c.x, c.y) c.converter.AddPoint(c.x, c.y)
return c return c
} }
@ -157,7 +156,7 @@ func (c *PathConverter) ArcTo(cx, cy, rx, ry, startAngle, angle float64) *PathCo
if c.startX == c.x && c.startY == c.y { if c.startX == c.x && c.startY == c.y {
c.converter.NextCommand(VertexCloseCommand) c.converter.NextCommand(VertexCloseCommand)
} }
c.converter.Vertex(c.x, c.y) c.converter.AddPoint(c.x, c.y)
return c return c
} }
@ -168,6 +167,6 @@ func (c *PathConverter) RArcTo(dcx, dcy, rx, ry, startAngle, angle float64) *Pat
func (c *PathConverter) Close() *PathConverter { func (c *PathConverter) Close() *PathConverter {
c.converter.NextCommand(VertexCloseCommand) c.converter.NextCommand(VertexCloseCommand)
c.converter.Vertex(c.startX, c.startY) c.converter.AddPoint(c.startX, c.startY)
return c return c
} }

View file

@ -39,18 +39,8 @@ func (p *PathStorage) Clear() {
} }
func (p *PathStorage) appendToPath(cmd PathCmd, vertices ...float64) { func (p *PathStorage) appendToPath(cmd PathCmd, vertices ...float64) {
if cap(p.vertices) <= len(p.vertices)+6 { p.commands = append(p.commands, cmd)
a := make([]PathCmd, len(p.commands), cap(p.commands)+256) p.vertices = append(p.vertices, vertices...)
b := make([]float64, len(p.vertices), cap(p.vertices)+256)
copy(a, p.commands)
p.commands = a
copy(b, p.vertices)
p.vertices = b
}
p.commands = p.commands[0 : len(p.commands)+1]
p.commands[len(p.commands)-1] = cmd
copy(p.vertices[len(p.vertices):len(p.vertices)+len(vertices)], vertices)
p.vertices = p.vertices[0 : len(p.vertices)+len(vertices)]
} }
func (src *PathStorage) Copy() (dest *PathStorage) { func (src *PathStorage) Copy() (dest *PathStorage) {
@ -77,6 +67,7 @@ func (p *PathStorage) Close() *PathStorage {
func (p *PathStorage) MoveTo(x, y float64) *PathStorage { func (p *PathStorage) MoveTo(x, y float64) *PathStorage {
p.appendToPath(MoveTo, x, y) p.appendToPath(MoveTo, x, y)
p.x = x p.x = x
p.y = y p.y = y
return p return p
@ -89,6 +80,9 @@ func (p *PathStorage) RMoveTo(dx, dy float64) *PathStorage {
} }
func (p *PathStorage) LineTo(x, y float64) *PathStorage { func (p *PathStorage) LineTo(x, y float64) *PathStorage {
if len(p.commands) == 0 { //special case when no move has been done
p.MoveTo(0, 0)
}
p.appendToPath(LineTo, x, y) p.appendToPath(LineTo, x, y)
p.x = x p.x = x
p.y = y p.y = y
@ -102,6 +96,9 @@ func (p *PathStorage) RLineTo(dx, dy float64) *PathStorage {
} }
func (p *PathStorage) QuadCurveTo(cx, cy, x, y float64) *PathStorage { func (p *PathStorage) QuadCurveTo(cx, cy, x, y float64) *PathStorage {
if len(p.commands) == 0 { //special case when no move has been done
p.MoveTo(0, 0)
}
p.appendToPath(QuadCurveTo, cx, cy, x, y) p.appendToPath(QuadCurveTo, cx, cy, x, y)
p.x = x p.x = x
p.y = y p.y = y
@ -115,6 +112,9 @@ func (p *PathStorage) RQuadCurveTo(dcx, dcy, dx, dy float64) *PathStorage {
} }
func (p *PathStorage) CubicCurveTo(cx1, cy1, cx2, cy2, x, y float64) *PathStorage { func (p *PathStorage) CubicCurveTo(cx1, cy1, cx2, cy2, x, y float64) *PathStorage {
if len(p.commands) == 0 { //special case when no move has been done
p.MoveTo(0, 0)
}
p.appendToPath(CubicCurveTo, cx1, cy1, cx2, cy2, x, y) p.appendToPath(CubicCurveTo, cx1, cy1, cx2, cy2, x, y)
p.x = x p.x = x
p.y = y p.y = y

View file

@ -55,7 +55,7 @@ func TestFreetype(t *testing.T) {
var p Path var p Path
p.LineTo(10, 190) p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold) c.Trace(&p, flattening_threshold)
poly := Polygon(p.points) poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff} color := color.RGBA{0, 0, 0, 0xff}
@ -77,7 +77,7 @@ func TestFreetypeNonZeroWinding(t *testing.T) {
var p Path var p Path
p.LineTo(10, 190) p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold) c.Trace(&p, flattening_threshold)
poly := Polygon(p.points) poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff} color := color.RGBA{0, 0, 0, 0xff}
@ -100,7 +100,7 @@ func TestRasterizer(t *testing.T) {
var p Path var p Path
p.LineTo(10, 190) p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold) c.Trace(&p, flattening_threshold)
poly := Polygon(p.points) poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff} color := color.RGBA{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0} tr := [6]float64{1, 0, 0, 1, 0, 0}
@ -116,7 +116,7 @@ func TestRasterizerNonZeroWinding(t *testing.T) {
var p Path var p Path
p.LineTo(10, 190) p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold) c.Trace(&p, flattening_threshold)
poly := Polygon(p.points) poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff} color := color.RGBA{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0} tr := [6]float64{1, 0, 0, 1, 0, 0}
@ -131,7 +131,7 @@ func BenchmarkFreetype(b *testing.B) {
var p Path var p Path
p.LineTo(10, 190) p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold) c.Trace(&p, flattening_threshold)
poly := Polygon(p.points) poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff} color := color.RGBA{0, 0, 0, 0xff}
@ -152,7 +152,7 @@ func BenchmarkFreetypeNonZeroWinding(b *testing.B) {
var p Path var p Path
p.LineTo(10, 190) p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold) c.Trace(&p, flattening_threshold)
poly := Polygon(p.points) poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff} color := color.RGBA{0, 0, 0, 0xff}
@ -174,7 +174,7 @@ func BenchmarkRasterizerNonZeroWinding(b *testing.B) {
var p Path var p Path
p.LineTo(10, 190) p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold) c.Trace(&p, flattening_threshold)
poly := Polygon(p.points) poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff} color := color.RGBA{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0} tr := [6]float64{1, 0, 0, 1, 0, 0}
@ -189,7 +189,7 @@ func BenchmarkRasterizer(b *testing.B) {
var p Path var p Path
p.LineTo(10, 190) p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold) c.Trace(&p, flattening_threshold)
poly := Polygon(p.points) poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff} color := color.RGBA{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0} tr := [6]float64{1, 0, 0, 1, 0, 0}

View file

@ -47,16 +47,16 @@ func (l *LineStroker) NextCommand(command VertexCommand) {
if command == VertexStopCommand { if command == VertexStopCommand {
l.Next.NextCommand(VertexStartCommand) l.Next.NextCommand(VertexStartCommand)
for i, j := 0, 1; j < len(l.vertices); i, j = i+2, j+2 { for i, j := 0, 1; j < len(l.vertices); i, j = i+2, j+2 {
l.Next.Vertex(l.vertices[i], l.vertices[j]) l.Next.AddPoint(l.vertices[i], l.vertices[j])
l.Next.NextCommand(VertexNoCommand) l.Next.NextCommand(VertexNoCommand)
} }
for i, j := len(l.rewind)-2, len(l.rewind)-1; j > 0; i, j = i-2, j-2 { for i, j := len(l.rewind)-2, len(l.rewind)-1; j > 0; i, j = i-2, j-2 {
l.Next.NextCommand(VertexNoCommand) l.Next.NextCommand(VertexNoCommand)
l.Next.Vertex(l.rewind[i], l.rewind[j]) l.Next.AddPoint(l.rewind[i], l.rewind[j])
} }
if len(l.vertices) > 1 { if len(l.vertices) > 1 {
l.Next.NextCommand(VertexNoCommand) l.Next.NextCommand(VertexNoCommand)
l.Next.Vertex(l.vertices[0], l.vertices[1]) l.Next.AddPoint(l.vertices[0], l.vertices[1])
} }
l.Next.NextCommand(VertexStopCommand) l.Next.NextCommand(VertexStopCommand)
// reinit vertices // reinit vertices
@ -66,7 +66,7 @@ func (l *LineStroker) NextCommand(command VertexCommand) {
} }
} }
func (l *LineStroker) Vertex(x, y float64) { func (l *LineStroker) AddPoint(x, y float64) {
switch l.command { switch l.command {
case VertexNoCommand: case VertexNoCommand:
l.line(l.x, l.y, x, y) l.line(l.x, l.y, x, y)

View file

@ -266,10 +266,10 @@ func (vmt *VertexMatrixTransform) NextCommand(command VertexCommand) {
vmt.Next.NextCommand(command) vmt.Next.NextCommand(command)
} }
func (vmt *VertexMatrixTransform) Vertex(x, y float64) { func (vmt *VertexMatrixTransform) AddPoint(x, y float64) {
u := x*vmt.tr[0] + y*vmt.tr[2] + vmt.tr[4] u := x*vmt.tr[0] + y*vmt.tr[2] + vmt.tr[4]
v := x*vmt.tr[1] + y*vmt.tr[3] + vmt.tr[5] v := x*vmt.tr[1] + y*vmt.tr[3] + vmt.tr[5]
vmt.Next.Vertex(u, v) vmt.Next.AddPoint(u, v)
} }
// this adder apply a Matrix transformation to points // this adder apply a Matrix transformation to points

View file

@ -15,5 +15,5 @@ const (
type VertexConverter interface { type VertexConverter interface {
NextCommand(cmd VertexCommand) NextCommand(cmd VertexCommand)
Vertex(x, y float64) AddPoint(x, y float64)
} }