Remove raster experiment

This commit is contained in:
Laurent Le Goff 2015-08-27 14:12:22 +02:00
parent c8d67448a9
commit 82a7e1e58e
9 changed files with 8 additions and 1950 deletions

View File

@ -10,8 +10,6 @@ import (
"log"
"os"
"testing"
"github.com/llgcode/draw2d/raster"
)
var (
@ -77,8 +75,8 @@ func TestCubicCurve(t *testing.T) {
p.MoveTo(testsCubicFloat64[i], testsCubicFloat64[i+1])
TraceCubic(&p, testsCubicFloat64[i:], flatteningThreshold)
img := image.NewNRGBA(image.Rect(0, 0, 300, 300))
raster.PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, testsCubicFloat64[i:i+8]...)
raster.PolylineBresenham(img, image.Black, p.Points...)
PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, testsCubicFloat64[i:i+8]...)
PolylineBresenham(img, image.Black, p.Points...)
//drawPoints(img, image.NRGBAColor{0, 0, 0, 0xff}, curve[:]...)
drawPoints(img, color.NRGBA{0, 0, 0, 0xff}, p.Points...)
SaveToPngFile(fmt.Sprintf("../output/curve/_test%d.png", i/8), img)
@ -93,8 +91,8 @@ func TestQuadCurve(t *testing.T) {
p.MoveTo(testsQuadFloat64[i], testsQuadFloat64[i+1])
TraceQuad(&p, testsQuadFloat64[i:], flatteningThreshold)
img := image.NewNRGBA(image.Rect(0, 0, 300, 300))
raster.PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, testsQuadFloat64[i:i+6]...)
raster.PolylineBresenham(img, image.Black, p.Points...)
PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, testsQuadFloat64[i:i+6]...)
PolylineBresenham(img, image.Black, p.Points...)
//drawPoints(img, image.NRGBAColor{0, 0, 0, 0xff}, curve[:]...)
drawPoints(img, color.NRGBA{0, 0, 0, 0xff}, p.Points...)
SaveToPngFile(fmt.Sprintf("../output/curve/_testQuad%d.png", i), img)

View File

@ -1,6 +1,7 @@
// Copyright 2011 The draw2d Authors. All rights reserved.
// created: 27/05/2011 by Laurent Le Goff
package raster
package draw2dbase
import (
"image/color"
@ -14,12 +15,14 @@ func abs(i int) int {
return i
}
// PolylineBresenham draws a polyline to an image
func PolylineBresenham(img draw.Image, c color.Color, s ...float64) {
for i := 2; i < len(s); i += 2 {
Bresenham(img, c, int(s[i-2]+0.5), int(s[i-1]+0.5), int(s[i]+0.5), int(s[i+1]+0.5))
}
}
// Bresenham draws a line between (x0, y0) and (x1, y1)
func Bresenham(img draw.Image, color color.Color, x0, y0, x1, y1 int) {
dx := abs(x1 - x0)
dy := abs(y1 - y0)

View File

@ -1,203 +0,0 @@
// Copyright 2011 The draw2d Authors. All rights reserved.
// created: 27/05/2011 by Laurent Le Goff
package raster
var SUBPIXEL_OFFSETS_SAMPLE_8 = [8]float64{
5.0 / 8,
0.0 / 8,
3.0 / 8,
6.0 / 8,
1.0 / 8,
4.0 / 8,
7.0 / 8,
2.0 / 8,
}
var SUBPIXEL_OFFSETS_SAMPLE_8_FIXED = [8]Fix{
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[0] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[1] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[2] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[3] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[4] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[5] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[6] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[7] * FIXED_FLOAT_COEF),
}
var SUBPIXEL_OFFSETS_SAMPLE_16 = [16]float64{
1.0 / 16,
8.0 / 16,
4.0 / 16,
15.0 / 16,
11.0 / 16,
2.0 / 16,
6.0 / 16,
14.0 / 16,
10.0 / 16,
3.0 / 16,
7.0 / 16,
12.0 / 16,
0.0 / 16,
9.0 / 16,
5.0 / 16,
13.0 / 16,
}
var SUBPIXEL_OFFSETS_SAMPLE_16_FIXED = [16]Fix{
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[0] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[1] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[2] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[3] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[4] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[5] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[6] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[7] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[8] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[9] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[10] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[11] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[12] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[13] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[14] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[15] * FIXED_FLOAT_COEF),
}
var SUBPIXEL_OFFSETS_SAMPLE_32 = [32]float64{
28.0 / 32,
13.0 / 32,
6.0 / 32,
23.0 / 32,
0.0 / 32,
17.0 / 32,
10.0 / 32,
27.0 / 32,
4.0 / 32,
21.0 / 32,
14.0 / 32,
31.0 / 32,
8.0 / 32,
25.0 / 32,
18.0 / 32,
3.0 / 32,
12.0 / 32,
29.0 / 32,
22.0 / 32,
7.0 / 32,
16.0 / 32,
1.0 / 32,
26.0 / 32,
11.0 / 32,
20.0 / 32,
5.0 / 32,
30.0 / 32,
15.0 / 32,
24.0 / 32,
9.0 / 32,
2.0 / 32,
19.0 / 32,
}
var SUBPIXEL_OFFSETS_SAMPLE_32_FIXED = [32]Fix{
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[0] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[1] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[2] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[3] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[4] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[5] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[6] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[7] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[8] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[9] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[10] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[11] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[12] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[13] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[14] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[15] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[16] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[17] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[18] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[19] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[20] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[21] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[22] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[23] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[24] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[25] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[26] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[27] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[28] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[29] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[30] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[31] * FIXED_FLOAT_COEF),
}
var coverageTable = [256]uint8{
pixelCoverage(0x00), pixelCoverage(0x01), pixelCoverage(0x02), pixelCoverage(0x03),
pixelCoverage(0x04), pixelCoverage(0x05), pixelCoverage(0x06), pixelCoverage(0x07),
pixelCoverage(0x08), pixelCoverage(0x09), pixelCoverage(0x0a), pixelCoverage(0x0b),
pixelCoverage(0x0c), pixelCoverage(0x0d), pixelCoverage(0x0e), pixelCoverage(0x0f),
pixelCoverage(0x10), pixelCoverage(0x11), pixelCoverage(0x12), pixelCoverage(0x13),
pixelCoverage(0x14), pixelCoverage(0x15), pixelCoverage(0x16), pixelCoverage(0x17),
pixelCoverage(0x18), pixelCoverage(0x19), pixelCoverage(0x1a), pixelCoverage(0x1b),
pixelCoverage(0x1c), pixelCoverage(0x1d), pixelCoverage(0x1e), pixelCoverage(0x1f),
pixelCoverage(0x20), pixelCoverage(0x21), pixelCoverage(0x22), pixelCoverage(0x23),
pixelCoverage(0x24), pixelCoverage(0x25), pixelCoverage(0x26), pixelCoverage(0x27),
pixelCoverage(0x28), pixelCoverage(0x29), pixelCoverage(0x2a), pixelCoverage(0x2b),
pixelCoverage(0x2c), pixelCoverage(0x2d), pixelCoverage(0x2e), pixelCoverage(0x2f),
pixelCoverage(0x30), pixelCoverage(0x31), pixelCoverage(0x32), pixelCoverage(0x33),
pixelCoverage(0x34), pixelCoverage(0x35), pixelCoverage(0x36), pixelCoverage(0x37),
pixelCoverage(0x38), pixelCoverage(0x39), pixelCoverage(0x3a), pixelCoverage(0x3b),
pixelCoverage(0x3c), pixelCoverage(0x3d), pixelCoverage(0x3e), pixelCoverage(0x3f),
pixelCoverage(0x40), pixelCoverage(0x41), pixelCoverage(0x42), pixelCoverage(0x43),
pixelCoverage(0x44), pixelCoverage(0x45), pixelCoverage(0x46), pixelCoverage(0x47),
pixelCoverage(0x48), pixelCoverage(0x49), pixelCoverage(0x4a), pixelCoverage(0x4b),
pixelCoverage(0x4c), pixelCoverage(0x4d), pixelCoverage(0x4e), pixelCoverage(0x4f),
pixelCoverage(0x50), pixelCoverage(0x51), pixelCoverage(0x52), pixelCoverage(0x53),
pixelCoverage(0x54), pixelCoverage(0x55), pixelCoverage(0x56), pixelCoverage(0x57),
pixelCoverage(0x58), pixelCoverage(0x59), pixelCoverage(0x5a), pixelCoverage(0x5b),
pixelCoverage(0x5c), pixelCoverage(0x5d), pixelCoverage(0x5e), pixelCoverage(0x5f),
pixelCoverage(0x60), pixelCoverage(0x61), pixelCoverage(0x62), pixelCoverage(0x63),
pixelCoverage(0x64), pixelCoverage(0x65), pixelCoverage(0x66), pixelCoverage(0x67),
pixelCoverage(0x68), pixelCoverage(0x69), pixelCoverage(0x6a), pixelCoverage(0x6b),
pixelCoverage(0x6c), pixelCoverage(0x6d), pixelCoverage(0x6e), pixelCoverage(0x6f),
pixelCoverage(0x70), pixelCoverage(0x71), pixelCoverage(0x72), pixelCoverage(0x73),
pixelCoverage(0x74), pixelCoverage(0x75), pixelCoverage(0x76), pixelCoverage(0x77),
pixelCoverage(0x78), pixelCoverage(0x79), pixelCoverage(0x7a), pixelCoverage(0x7b),
pixelCoverage(0x7c), pixelCoverage(0x7d), pixelCoverage(0x7e), pixelCoverage(0x7f),
pixelCoverage(0x80), pixelCoverage(0x81), pixelCoverage(0x82), pixelCoverage(0x83),
pixelCoverage(0x84), pixelCoverage(0x85), pixelCoverage(0x86), pixelCoverage(0x87),
pixelCoverage(0x88), pixelCoverage(0x89), pixelCoverage(0x8a), pixelCoverage(0x8b),
pixelCoverage(0x8c), pixelCoverage(0x8d), pixelCoverage(0x8e), pixelCoverage(0x8f),
pixelCoverage(0x90), pixelCoverage(0x91), pixelCoverage(0x92), pixelCoverage(0x93),
pixelCoverage(0x94), pixelCoverage(0x95), pixelCoverage(0x96), pixelCoverage(0x97),
pixelCoverage(0x98), pixelCoverage(0x99), pixelCoverage(0x9a), pixelCoverage(0x9b),
pixelCoverage(0x9c), pixelCoverage(0x9d), pixelCoverage(0x9e), pixelCoverage(0x9f),
pixelCoverage(0xa0), pixelCoverage(0xa1), pixelCoverage(0xa2), pixelCoverage(0xa3),
pixelCoverage(0xa4), pixelCoverage(0xa5), pixelCoverage(0xa6), pixelCoverage(0xa7),
pixelCoverage(0xa8), pixelCoverage(0xa9), pixelCoverage(0xaa), pixelCoverage(0xab),
pixelCoverage(0xac), pixelCoverage(0xad), pixelCoverage(0xae), pixelCoverage(0xaf),
pixelCoverage(0xb0), pixelCoverage(0xb1), pixelCoverage(0xb2), pixelCoverage(0xb3),
pixelCoverage(0xb4), pixelCoverage(0xb5), pixelCoverage(0xb6), pixelCoverage(0xb7),
pixelCoverage(0xb8), pixelCoverage(0xb9), pixelCoverage(0xba), pixelCoverage(0xbb),
pixelCoverage(0xbc), pixelCoverage(0xbd), pixelCoverage(0xbe), pixelCoverage(0xbf),
pixelCoverage(0xc0), pixelCoverage(0xc1), pixelCoverage(0xc2), pixelCoverage(0xc3),
pixelCoverage(0xc4), pixelCoverage(0xc5), pixelCoverage(0xc6), pixelCoverage(0xc7),
pixelCoverage(0xc8), pixelCoverage(0xc9), pixelCoverage(0xca), pixelCoverage(0xcb),
pixelCoverage(0xcc), pixelCoverage(0xcd), pixelCoverage(0xce), pixelCoverage(0xcf),
pixelCoverage(0xd0), pixelCoverage(0xd1), pixelCoverage(0xd2), pixelCoverage(0xd3),
pixelCoverage(0xd4), pixelCoverage(0xd5), pixelCoverage(0xd6), pixelCoverage(0xd7),
pixelCoverage(0xd8), pixelCoverage(0xd9), pixelCoverage(0xda), pixelCoverage(0xdb),
pixelCoverage(0xdc), pixelCoverage(0xdd), pixelCoverage(0xde), pixelCoverage(0xdf),
pixelCoverage(0xe0), pixelCoverage(0xe1), pixelCoverage(0xe2), pixelCoverage(0xe3),
pixelCoverage(0xe4), pixelCoverage(0xe5), pixelCoverage(0xe6), pixelCoverage(0xe7),
pixelCoverage(0xe8), pixelCoverage(0xe9), pixelCoverage(0xea), pixelCoverage(0xeb),
pixelCoverage(0xec), pixelCoverage(0xed), pixelCoverage(0xee), pixelCoverage(0xef),
pixelCoverage(0xf0), pixelCoverage(0xf1), pixelCoverage(0xf2), pixelCoverage(0xf3),
pixelCoverage(0xf4), pixelCoverage(0xf5), pixelCoverage(0xf6), pixelCoverage(0xf7),
pixelCoverage(0xf8), pixelCoverage(0xf9), pixelCoverage(0xfa), pixelCoverage(0xfb),
pixelCoverage(0xfc), pixelCoverage(0xfd), pixelCoverage(0xfe), pixelCoverage(0xff),
}
func pixelCoverage(a uint8) uint8 {
return a&1 + a>>1&1 + a>>2&1 + a>>3&1 + a>>4&1 + a>>5&1 + a>>6&1 + a>>7&1
}

View File

@ -1,320 +0,0 @@
// Copyright 2011 The draw2d Authors. All rights reserved.
// created: 27/05/2011 by Laurent Le Goff
package raster
import (
"image"
"image/color"
"unsafe"
)
const (
SUBPIXEL_SHIFT = 3
SUBPIXEL_COUNT = 1 << SUBPIXEL_SHIFT
)
var SUBPIXEL_OFFSETS = SUBPIXEL_OFFSETS_SAMPLE_8_FIXED
type SUBPIXEL_DATA uint8
type NON_ZERO_MASK_DATA_UNIT uint8
type Rasterizer8BitsSample struct {
MaskBuffer []SUBPIXEL_DATA
WindingBuffer []NON_ZERO_MASK_DATA_UNIT
Width int
BufferWidth int
Height int
ClipBound [4]float64
RemappingMatrix [6]float64
}
/* width and height define the maximum output size for the filler.
* The filler will output to larger bitmaps as well, but the output will
* be cropped.
*/
func NewRasterizer8BitsSample(width, height int) *Rasterizer8BitsSample {
var r Rasterizer8BitsSample
// Scale the coordinates by SUBPIXEL_COUNT in vertical direction
// The sampling point for the sub-pixel is at the top right corner. This
// adjustment moves it to the pixel center.
r.RemappingMatrix = [6]float64{1, 0, 0, SUBPIXEL_COUNT, 0.5 / SUBPIXEL_COUNT, -0.5 * SUBPIXEL_COUNT}
r.Width = width
r.Height = height
// The buffer used for filling needs to be one pixel wider than the bitmap.
// This is because the end flag that turns the fill of is the first pixel
// after the actually drawn edge.
r.BufferWidth = width + 1
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*height*SUBPIXEL_COUNT)
r.ClipBound = clip(0, 0, width, height, SUBPIXEL_COUNT)
return &r
}
func clip(x, y, width, height, scale int) [4]float64 {
var clipBound [4]float64
offset := 0.99 / float64(scale)
clipBound[0] = float64(x) + offset
clipBound[2] = float64(x+width) - offset
clipBound[1] = float64(y * scale)
clipBound[3] = float64((y + height) * scale)
return clipBound
}
func intersect(r1, r2 [4]float64) [4]float64 {
if r1[0] < r2[0] {
r1[0] = r2[0]
}
if r1[2] > r2[2] {
r1[2] = r2[2]
}
if r1[0] > r1[2] {
r1[0] = r1[2]
}
if r1[1] < r2[1] {
r1[1] = r2[1]
}
if r1[3] > r2[3] {
r1[3] = r2[3]
}
if r1[1] > r1[3] {
r1[1] = r1[3]
}
return r1
}
func (r *Rasterizer8BitsSample) RenderEvenOdd(img *image.RGBA, color *color.RGBA, polygon *Polygon, tr [6]float64) {
// memset 0 the mask buffer
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
// inline matrix multiplication
transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
}
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound)
p := 0
l := len(*polygon) / 2
var edges [32]PolygonEdge
for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ {
r.addEvenOddEdge(&edges[k])
}
p += 16
}
r.fillEvenOdd(img, color, clipRect)
}
//! Adds an edge to be used with even-odd fill.
func (r *Rasterizer8BitsSample) addEvenOddEdge(edge *PolygonEdge) {
x := Fix(edge.X * FIXED_FLOAT_COEF)
slope := Fix(edge.Slope * FIXED_FLOAT_COEF)
slopeFix := Fix(0)
if edge.LastLine-edge.FirstLine >= SLOPE_FIX_STEP {
slopeFix = Fix(edge.Slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) - slope<<SLOPE_FIX_SHIFT
}
var mask SUBPIXEL_DATA
var ySub uint32
var xp, yLine int
for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = uint32(y & (SUBPIXEL_COUNT - 1))
xp = int((x + SUBPIXEL_OFFSETS[ySub]) >> FIXED_SHIFT)
mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] ^= mask
x += slope
if y&SLOPE_FIX_MASK == 0 {
x += slopeFix
}
}
}
//! Adds an edge to be used with non-zero winding fill.
func (r *Rasterizer8BitsSample) addNonZeroEdge(edge *PolygonEdge) {
x := Fix(edge.X * FIXED_FLOAT_COEF)
slope := Fix(edge.Slope * FIXED_FLOAT_COEF)
slopeFix := Fix(0)
if edge.LastLine-edge.FirstLine >= SLOPE_FIX_STEP {
slopeFix = Fix(edge.Slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) - slope<<SLOPE_FIX_SHIFT
}
var mask SUBPIXEL_DATA
var ySub uint32
var xp, yLine int
winding := NON_ZERO_MASK_DATA_UNIT(edge.Winding)
for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = uint32(y & (SUBPIXEL_COUNT - 1))
xp = int((x + SUBPIXEL_OFFSETS[ySub]) >> FIXED_SHIFT)
mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] |= mask
r.WindingBuffer[(yLine*r.BufferWidth+xp)*SUBPIXEL_COUNT+int(ySub)] += winding
x += slope
if y&SLOPE_FIX_MASK == 0 {
x += slopeFix
}
}
}
// Renders the mask to the canvas with even-odd fill.
func (r *Rasterizer8BitsSample) fillEvenOdd(img *image.RGBA, color *color.RGBA, clipBound [4]float64) {
var x, y uint32
minX := uint32(clipBound[0])
maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff
cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride)
var mask SUBPIXEL_DATA
for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:]
mask = 0
for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x]))
mask ^= r.MaskBuffer[y*uint32(r.BufferWidth)+x]
// 8bits
alpha := uint32(coverageTable[mask])
// 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := SUBPIXEL_COUNT - alpha
ct1 := *p & 0xff00ff * invAlpha
ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2
}
}
}
/*
* Renders the polygon with non-zero winding fill.
* param aTarget the target bitmap.
* param aPolygon the polygon to render.
* param aColor the color to be used for rendering.
* param aTransformation the transformation matrix.
*/
func (r *Rasterizer8BitsSample) RenderNonZeroWinding(img *image.RGBA, color *color.RGBA, polygon *Polygon, tr [6]float64) {
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*r.Height*SUBPIXEL_COUNT)
// inline matrix multiplication
transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
}
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound)
p := 0
l := len(*polygon) / 2
var edges [32]PolygonEdge
for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ {
r.addNonZeroEdge(&edges[k])
}
p += 16
}
r.fillNonZero(img, color, clipRect)
}
//! Renders the mask to the canvas with non-zero winding fill.
func (r *Rasterizer8BitsSample) fillNonZero(img *image.RGBA, color *color.RGBA, clipBound [4]float64) {
var x, y uint32
minX := uint32(clipBound[0])
maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff
cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride)
var mask SUBPIXEL_DATA
var n uint32
var values [SUBPIXEL_COUNT]NON_ZERO_MASK_DATA_UNIT
for n = 0; n < SUBPIXEL_COUNT; n++ {
values[n] = 0
}
for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:]
mask = 0
for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x]))
temp := r.MaskBuffer[y*uint32(r.BufferWidth)+x]
if temp != 0 {
var bit SUBPIXEL_DATA = 1
for n = 0; n < SUBPIXEL_COUNT; n++ {
if temp&bit != 0 {
t := values[n]
values[n] += r.WindingBuffer[(y*uint32(r.BufferWidth)+x)*SUBPIXEL_COUNT+n]
if (t == 0 || values[n] == 0) && t != values[n] {
mask ^= bit
}
}
bit <<= 1
}
}
// 8bits
alpha := uint32(coverageTable[mask])
// 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := uint32(SUBPIXEL_COUNT) - alpha
ct1 := *p & 0xff00ff * invAlpha
ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2
}
}
}

View File

@ -1,306 +0,0 @@
// Copyright 2011 The draw2d Authors. All rights reserved.
// created: 27/05/2011 by Laurent Le Goff
// +build ignore
package raster
import (
"image"
"image/color"
"unsafe"
)
const (
SUBPIXEL_SHIFT = 3
SUBPIXEL_COUNT = 1 << SUBPIXEL_SHIFT
)
var SUBPIXEL_OFFSETS = SUBPIXEL_OFFSETS_SAMPLE_8
type SUBPIXEL_DATA uint16
type NON_ZERO_MASK_DATA_UNIT uint8
type Rasterizer8BitsSample struct {
MaskBuffer []SUBPIXEL_DATA
WindingBuffer []NON_ZERO_MASK_DATA_UNIT
Width int
BufferWidth int
Height int
ClipBound [4]float64
RemappingMatrix [6]float64
}
/* width and height define the maximum output size for the filler.
* The filler will output to larger bitmaps as well, but the output will
* be cropped.
*/
func NewRasterizer8BitsSample(width, height int) *Rasterizer8BitsSample {
var r Rasterizer8BitsSample
// Scale the coordinates by SUBPIXEL_COUNT in vertical direction
// The sampling point for the sub-pixel is at the top right corner. This
// adjustment moves it to the pixel center.
r.RemappingMatrix = [6]float64{1, 0, 0, SUBPIXEL_COUNT, 0.5 / SUBPIXEL_COUNT, -0.5 * SUBPIXEL_COUNT}
r.Width = width
r.Height = height
// The buffer used for filling needs to be one pixel wider than the bitmap.
// This is because the end flag that turns the fill of is the first pixel
// after the actually drawn edge.
r.BufferWidth = width + 1
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*height*SUBPIXEL_COUNT)
r.ClipBound = clip(0, 0, width, height, SUBPIXEL_COUNT)
return &r
}
func clip(x, y, width, height, scale int) [4]float64 {
var clipBound [4]float64
offset := 0.99 / float64(scale)
clipBound[0] = float64(x) + offset
clipBound[2] = float64(x+width) - offset
clipBound[1] = float64(y * scale)
clipBound[3] = float64((y + height) * scale)
return clipBound
}
func intersect(r1, r2 [4]float64) [4]float64 {
if r1[0] < r2[0] {
r1[0] = r2[0]
}
if r1[2] > r2[2] {
r1[2] = r2[2]
}
if r1[0] > r1[2] {
r1[0] = r1[2]
}
if r1[1] < r2[1] {
r1[1] = r2[1]
}
if r1[3] > r2[3] {
r1[3] = r2[3]
}
if r1[1] > r1[3] {
r1[1] = r1[3]
}
return r1
}
func (r *Rasterizer8BitsSample) RenderEvenOdd(img *image.RGBA, color *color.RGBA, polygon *Polygon, tr [6]float64) {
// memset 0 the mask buffer
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
// inline matrix multiplication
transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
}
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound)
p := 0
l := len(*polygon) / 2
var edges [32]PolygonEdge
for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ {
r.addEvenOddEdge(&edges[k])
}
p += 16
}
r.fillEvenOdd(img, color, clipRect)
}
//! Adds an edge to be used with even-odd fill.
func (r *Rasterizer8BitsSample) addEvenOddEdge(edge *PolygonEdge) {
x := edge.X
slope := edge.Slope
var ySub, mask SUBPIXEL_DATA
var xp, yLine int
for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = SUBPIXEL_DATA(y & (SUBPIXEL_COUNT - 1))
xp = int(x + SUBPIXEL_OFFSETS[ySub])
mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] ^= mask
x += slope
}
}
// Renders the mask to the canvas with even-odd fill.
func (r *Rasterizer8BitsSample) fillEvenOdd(img *image.RGBA, color *color.RGBA, clipBound [4]float64) {
var x, y uint32
minX := uint32(clipBound[0])
maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff
cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride)
var mask SUBPIXEL_DATA
for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:]
mask = 0
for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x]))
mask ^= r.MaskBuffer[y*uint32(r.BufferWidth)+x]
// 8bits
alpha := uint32(coverageTable[mask])
// 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := uint32(SUBPIXEL_COUNT) - alpha
ct1 := *p & 0xff00ff * invAlpha
ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2
}
}
}
/*
* Renders the polygon with non-zero winding fill.
* param aTarget the target bitmap.
* param aPolygon the polygon to render.
* param aColor the color to be used for rendering.
* param aTransformation the transformation matrix.
*/
func (r *Rasterizer8BitsSample) RenderNonZeroWinding(img *image.RGBA, color *color.RGBA, polygon *Polygon, tr [6]float64) {
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*r.Height*SUBPIXEL_COUNT)
// inline matrix multiplication
transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
}
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound)
p := 0
l := len(*polygon) / 2
var edges [32]PolygonEdge
for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ {
r.addNonZeroEdge(&edges[k])
}
p += 16
}
r.fillNonZero(img, color, clipRect)
}
//! Adds an edge to be used with non-zero winding fill.
func (r *Rasterizer8BitsSample) addNonZeroEdge(edge *PolygonEdge) {
x := edge.X
slope := edge.Slope
var ySub, mask SUBPIXEL_DATA
var xp, yLine int
winding := NON_ZERO_MASK_DATA_UNIT(edge.Winding)
for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = SUBPIXEL_DATA(y & (SUBPIXEL_COUNT - 1))
xp = int(x + SUBPIXEL_OFFSETS[ySub])
mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] |= mask
r.WindingBuffer[(yLine*r.BufferWidth+xp)*SUBPIXEL_COUNT+int(ySub)] += winding
x += slope
}
}
//! Renders the mask to the canvas with non-zero winding fill.
func (r *Rasterizer8BitsSample) fillNonZero(img *image.RGBA, color *color.RGBA, clipBound [4]float64) {
var x, y uint32
minX := uint32(clipBound[0])
maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff
cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride)
var mask SUBPIXEL_DATA
var n uint32
var values [SUBPIXEL_COUNT]NON_ZERO_MASK_DATA_UNIT
for n = 0; n < SUBPIXEL_COUNT; n++ {
values[n] = 0
}
for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:]
mask = 0
for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x]))
temp := r.MaskBuffer[y*uint32(r.BufferWidth)+x]
if temp != 0 {
var bit SUBPIXEL_DATA = 1
for n = 0; n < SUBPIXEL_COUNT; n++ {
if temp&bit != 0 {
t := values[n]
values[n] += r.WindingBuffer[(y*uint32(r.BufferWidth)+x)*SUBPIXEL_COUNT+n]
if (t == 0 || values[n] == 0) && t != values[n] {
mask ^= bit
}
}
bit <<= 1
}
}
// 8bits
alpha := uint32(coverageTable[mask])
// 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := uint32(SUBPIXEL_COUNT) - alpha
ct1 := *p & 0xff00ff * invAlpha
ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2
}
}
}

View File

@ -1,323 +0,0 @@
// Copyright 2011 The draw2d Authors. All rights reserved.
// created: 27/05/2011 by Laurent Le Goff
// +build ignore
package raster
import (
"image"
"image/color"
"unsafe"
)
const (
SUBPIXEL_SHIFT = 5
SUBPIXEL_COUNT = 1 << SUBPIXEL_SHIFT
)
var SUBPIXEL_OFFSETS = SUBPIXEL_OFFSETS_SAMPLE_32_FIXED
type SUBPIXEL_DATA uint32
type NON_ZERO_MASK_DATA_UNIT uint8
type Rasterizer8BitsSample struct {
MaskBuffer []SUBPIXEL_DATA
WindingBuffer []NON_ZERO_MASK_DATA_UNIT
Width int
BufferWidth int
Height int
ClipBound [4]float64
RemappingMatrix [6]float64
}
/* width and height define the maximum output size for the filler.
* The filler will output to larger bitmaps as well, but the output will
* be cropped.
*/
func NewRasterizer8BitsSample(width, height int) *Rasterizer8BitsSample {
var r Rasterizer8BitsSample
// Scale the coordinates by SUBPIXEL_COUNT in vertical direction
// The sampling point for the sub-pixel is at the top right corner. This
// adjustment moves it to the pixel center.
r.RemappingMatrix = [6]float64{1, 0, 0, SUBPIXEL_COUNT, 0.5 / SUBPIXEL_COUNT, -0.5 * SUBPIXEL_COUNT}
r.Width = width
r.Height = height
// The buffer used for filling needs to be one pixel wider than the bitmap.
// This is because the end flag that turns the fill of is the first pixel
// after the actually drawn edge.
r.BufferWidth = width + 1
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*height*SUBPIXEL_COUNT)
r.ClipBound = clip(0, 0, width, height, SUBPIXEL_COUNT)
return &r
}
func clip(x, y, width, height, scale int) [4]float64 {
var clipBound [4]float64
offset := 0.99 / float64(scale)
clipBound[0] = float64(x) + offset
clipBound[2] = float64(x+width) - offset
clipBound[1] = float64(y * scale)
clipBound[3] = float64((y + height) * scale)
return clipBound
}
func intersect(r1, r2 [4]float64) [4]float64 {
if r1[0] < r2[0] {
r1[0] = r2[0]
}
if r1[2] > r2[2] {
r1[2] = r2[2]
}
if r1[0] > r1[2] {
r1[0] = r1[2]
}
if r1[1] < r2[1] {
r1[1] = r2[1]
}
if r1[3] > r2[3] {
r1[3] = r2[3]
}
if r1[1] > r1[3] {
r1[1] = r1[3]
}
return r1
}
func (r *Rasterizer8BitsSample) RenderEvenOdd(img *image.RGBA, color *color.RGBA, polygon *Polygon, tr [6]float64) {
// memset 0 the mask buffer
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
// inline matrix multiplication
transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
}
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound)
p := 0
l := len(*polygon) / 2
var edges [32]PolygonEdge
for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ {
r.addEvenOddEdge(&edges[k])
}
p += 16
}
r.fillEvenOdd(img, color, clipRect)
}
//! Adds an edge to be used with even-odd fill.
func (r *Rasterizer8BitsSample) addEvenOddEdge(edge *PolygonEdge) {
x := Fix(edge.X * FIXED_FLOAT_COEF)
slope := Fix(edge.Slope * FIXED_FLOAT_COEF)
slopeFix := Fix(0)
if edge.LastLine-edge.FirstLine >= SLOPE_FIX_STEP {
slopeFix = Fix(edge.Slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) - slope<<SLOPE_FIX_SHIFT
}
var mask SUBPIXEL_DATA
var ySub uint32
var xp, yLine int
for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = uint32(y & (SUBPIXEL_COUNT - 1))
xp = int((x + SUBPIXEL_OFFSETS[ySub]) >> FIXED_SHIFT)
mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] ^= mask
x += slope
if y&SLOPE_FIX_MASK == 0 {
x += slopeFix
}
}
}
//! Adds an edge to be used with non-zero winding fill.
func (r *Rasterizer8BitsSample) addNonZeroEdge(edge *PolygonEdge) {
x := Fix(edge.X * FIXED_FLOAT_COEF)
slope := Fix(edge.Slope * FIXED_FLOAT_COEF)
slopeFix := Fix(0)
if edge.LastLine-edge.FirstLine >= SLOPE_FIX_STEP {
slopeFix = Fix(edge.Slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) - slope<<SLOPE_FIX_SHIFT
}
var mask SUBPIXEL_DATA
var ySub uint32
var xp, yLine int
winding := NON_ZERO_MASK_DATA_UNIT(edge.Winding)
for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = uint32(y & (SUBPIXEL_COUNT - 1))
xp = int((x + SUBPIXEL_OFFSETS[ySub]) >> FIXED_SHIFT)
mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] |= mask
r.WindingBuffer[(yLine*r.BufferWidth+xp)*SUBPIXEL_COUNT+int(ySub)] += winding
x += slope
if y&SLOPE_FIX_MASK == 0 {
x += slopeFix
}
}
}
// Renders the mask to the canvas with even-odd fill.
func (r *Rasterizer8BitsSample) fillEvenOdd(img *image.RGBA, color *color.RGBA, clipBound [4]float64) {
var x, y uint32
minX := uint32(clipBound[0])
maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff
cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride)
var mask SUBPIXEL_DATA
for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:]
mask = 0
for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x]))
mask ^= r.MaskBuffer[y*uint32(r.BufferWidth)+x]
// 8bits
//alpha := uint32(coverageTable[mask])
// 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits
alpha := uint32(coverageTable[mask&0xff] + coverageTable[mask>>8&0xff] + coverageTable[mask>>16&0xff] + coverageTable[mask>>24&0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := uint32(SUBPIXEL_COUNT) - alpha
ct1 := *p & 0xff00ff * invAlpha
ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2
}
}
}
/*
* Renders the polygon with non-zero winding fill.
* param aTarget the target bitmap.
* param aPolygon the polygon to render.
* param aColor the color to be used for rendering.
* param aTransformation the transformation matrix.
*/
func (r *Rasterizer8BitsSample) RenderNonZeroWinding(img *image.RGBA, color *color.RGBA, polygon *Polygon, tr [6]float64) {
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*r.Height*SUBPIXEL_COUNT)
// inline matrix multiplication
transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
}
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound)
p := 0
l := len(*polygon) / 2
var edges [32]PolygonEdge
for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ {
r.addNonZeroEdge(&edges[k])
}
p += 16
}
r.fillNonZero(img, color, clipRect)
}
//! Renders the mask to the canvas with non-zero winding fill.
func (r *Rasterizer8BitsSample) fillNonZero(img *image.RGBA, color *color.RGBA, clipBound [4]float64) {
var x, y uint32
minX := uint32(clipBound[0])
maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff
cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride)
var mask SUBPIXEL_DATA
var n uint32
var values [SUBPIXEL_COUNT]NON_ZERO_MASK_DATA_UNIT
for n = 0; n < SUBPIXEL_COUNT; n++ {
values[n] = 0
}
for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:]
mask = 0
for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x]))
temp := r.MaskBuffer[y*uint32(r.BufferWidth)+x]
if temp != 0 {
var bit SUBPIXEL_DATA = 1
for n = 0; n < SUBPIXEL_COUNT; n++ {
if temp&bit != 0 {
t := values[n]
values[n] += r.WindingBuffer[(y*uint32(r.BufferWidth)+x)*SUBPIXEL_COUNT+n]
if (t == 0 || values[n] == 0) && t != values[n] {
mask ^= bit
}
}
bit <<= 1
}
}
// 8bits
//alpha := uint32(coverageTable[mask])
// 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits
alpha := uint32(coverageTable[mask&0xff] + coverageTable[mask>>8&0xff] + coverageTable[mask>>16&0xff] + coverageTable[mask>>24&0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := uint32(SUBPIXEL_COUNT) - alpha
ct1 := *p & 0xff00ff * invAlpha
ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2
}
}
}

View File

@ -1,17 +0,0 @@
package raster
type Fix int32
const (
FIXED_SHIFT = 16
FIXED_FLOAT_COEF = 1 << FIXED_SHIFT
)
/*! Fixed point math inevitably introduces rounding error to the DDA. The error is
* fixed every now and then by a separate fix value. The defines below set these.
*/
const (
SLOPE_FIX_SHIFT = 8
SLOPE_FIX_STEP = 1 << SLOPE_FIX_SHIFT
SLOPE_FIX_MASK = SLOPE_FIX_STEP - 1
)

View File

@ -1,581 +0,0 @@
// Copyright 2011 The draw2d Authors. All rights reserved.
// created: 27/05/2011 by Laurent Le Goff
package raster
const (
POLYGON_CLIP_NONE = iota
POLYGON_CLIP_LEFT
POLYGON_CLIP_RIGHT
POLYGON_CLIP_TOP
POLYGON_CLIP_BOTTOM
)
type Polygon []float64
type PolygonEdge struct {
X, Slope float64
FirstLine, LastLine int
Winding int16
}
//! A more optimized representation of a polygon edge.
type PolygonScanEdge struct {
FirstLine, LastLine int
Winding int16
X Fix
Slope Fix
SlopeFix Fix
NextEdge *PolygonScanEdge
}
//! Calculates the edges of the polygon with transformation and clipping to edges array.
/*! \param startIndex the index for the first vertex.
* \param vertexCount the amount of vertices to convert.
* \param edges the array for result edges. This should be able to contain 2*aVertexCount edges.
* \param tr the transformation matrix for the polygon.
* \param aClipRectangle the clip rectangle.
* \return the amount of edges in the result.
*/
func (p Polygon) getEdges(startIndex, vertexCount int, edges []PolygonEdge, tr [6]float64, clipBound [4]float64) int {
startIndex = startIndex * 2
endIndex := startIndex + vertexCount*2
if endIndex > len(p) {
endIndex = len(p)
}
x := p[startIndex]
y := p[startIndex+1]
// inline transformation
prevX := x*tr[0] + y*tr[2] + tr[4]
prevY := x*tr[1] + y*tr[3] + tr[5]
//! Calculates the clip flags for a point.
prevClipFlags := POLYGON_CLIP_NONE
if prevX < clipBound[0] {
prevClipFlags |= POLYGON_CLIP_LEFT
} else if prevX >= clipBound[2] {
prevClipFlags |= POLYGON_CLIP_RIGHT
}
if prevY < clipBound[1] {
prevClipFlags |= POLYGON_CLIP_TOP
} else if prevY >= clipBound[3] {
prevClipFlags |= POLYGON_CLIP_BOTTOM
}
edgeCount := 0
var k, clipFlags, clipSum, clipUnion int
var xleft, yleft, xright, yright, oldY, maxX, minX float64
var swapWinding int16
for n := startIndex; n < endIndex; n = n + 2 {
k = (n + 2) % len(p)
x = p[k]*tr[0] + p[k+1]*tr[2] + tr[4]
y = p[k]*tr[1] + p[k+1]*tr[3] + tr[5]
//! Calculates the clip flags for a point.
clipFlags = POLYGON_CLIP_NONE
if prevX < clipBound[0] {
clipFlags |= POLYGON_CLIP_LEFT
} else if prevX >= clipBound[2] {
clipFlags |= POLYGON_CLIP_RIGHT
}
if prevY < clipBound[1] {
clipFlags |= POLYGON_CLIP_TOP
} else if prevY >= clipBound[3] {
clipFlags |= POLYGON_CLIP_BOTTOM
}
clipSum = prevClipFlags | clipFlags
clipUnion = prevClipFlags & clipFlags
// Skip all edges that are either completely outside at the top or at the bottom.
if clipUnion&(POLYGON_CLIP_TOP|POLYGON_CLIP_BOTTOM) == 0 {
if clipUnion&POLYGON_CLIP_RIGHT != 0 {
// Both clip to right, edge is a vertical line on the right side
if getVerticalEdge(prevY, y, clipBound[2], &edges[edgeCount], clipBound) {
edgeCount++
}
} else if clipUnion&POLYGON_CLIP_LEFT != 0 {
// Both clip to left, edge is a vertical line on the left side
if getVerticalEdge(prevY, y, clipBound[0], &edges[edgeCount], clipBound) {
edgeCount++
}
} else if clipSum&(POLYGON_CLIP_RIGHT|POLYGON_CLIP_LEFT) == 0 {
// No clipping in the horizontal direction
if getEdge(prevX, prevY, x, y, &edges[edgeCount], clipBound) {
edgeCount++
}
} else {
// Clips to left or right or both.
if x < prevX {
xleft, yleft = x, y
xright, yright = prevX, prevY
swapWinding = -1
} else {
xleft, yleft = prevX, prevY
xright, yright = x, y
swapWinding = 1
}
slope := (yright - yleft) / (xright - xleft)
if clipSum&POLYGON_CLIP_RIGHT != 0 {
// calculate new position for the right vertex
oldY = yright
maxX = clipBound[2]
yright = yleft + (maxX-xleft)*slope
xright = maxX
// add vertical edge for the overflowing part
if getVerticalEdge(yright, oldY, maxX, &edges[edgeCount], clipBound) {
edges[edgeCount].Winding *= swapWinding
edgeCount++
}
}
if clipSum&POLYGON_CLIP_LEFT != 0 {
// calculate new position for the left vertex
oldY = yleft
minX = clipBound[0]
yleft = yleft + (minX-xleft)*slope
xleft = minX
// add vertical edge for the overflowing part
if getVerticalEdge(oldY, yleft, minX, &edges[edgeCount], clipBound) {
edges[edgeCount].Winding *= swapWinding
edgeCount++
}
}
if getEdge(xleft, yleft, xright, yright, &edges[edgeCount], clipBound) {
edges[edgeCount].Winding *= swapWinding
edgeCount++
}
}
}
prevClipFlags = clipFlags
prevX = x
prevY = y
}
return edgeCount
}
//! Creates a polygon edge between two vectors.
/*! Clips the edge vertically to the clip rectangle. Returns true for edges that
* should be rendered, false for others.
*/
func getEdge(x0, y0, x1, y1 float64, edge *PolygonEdge, clipBound [4]float64) bool {
var startX, startY, endX, endY float64
var winding int16
if y0 <= y1 {
startX = x0
startY = y0
endX = x1
endY = y1
winding = 1
} else {
startX = x1
startY = y1
endX = x0
endY = y0
winding = -1
}
// Essentially, firstLine is floor(startY + 1) and lastLine is floor(endY).
// These are refactored to integer casts in order to avoid function
// calls. The difference with integer cast is that numbers are always
// rounded towards zero. Since values smaller than zero get clipped away,
// only coordinates between 0 and -1 require greater attention as they
// also round to zero. The problems in this range can be avoided by
// adding one to the values before conversion and subtracting after it.
firstLine := int(startY + 1)
lastLine := int(endY+1) - 1
minClip := int(clipBound[1])
maxClip := int(clipBound[3])
// If start and end are on the same line, the edge doesn't cross
// any lines and thus can be ignored.
// If the end is smaller than the first line, edge is out.
// If the start is larger than the last line, edge is out.
if firstLine > lastLine || lastLine < minClip || firstLine >= maxClip {
return false
}
// Adjust the start based on the target.
if firstLine < minClip {
firstLine = minClip
}
if lastLine >= maxClip {
lastLine = maxClip - 1
}
edge.Slope = (endX - startX) / (endY - startY)
edge.X = startX + (float64(firstLine)-startY)*edge.Slope
edge.Winding = winding
edge.FirstLine = firstLine
edge.LastLine = lastLine
return true
}
//! Creates a vertical polygon edge between two y values.
/*! Clips the edge vertically to the clip rectangle. Returns true for edges that
* should be rendered, false for others.
*/
func getVerticalEdge(startY, endY, x float64, edge *PolygonEdge, clipBound [4]float64) bool {
var start, end float64
var winding int16
if startY < endY {
start = startY
end = endY
winding = 1
} else {
start = endY
end = startY
winding = -1
}
firstLine := int(start + 1)
lastLine := int(end+1) - 1
minClip := int(clipBound[1])
maxClip := int(clipBound[3])
// If start and end are on the same line, the edge doesn't cross
// any lines and thus can be ignored.
// If the end is smaller than the first line, edge is out.
// If the start is larger than the last line, edge is out.
if firstLine > lastLine || lastLine < minClip || firstLine >= maxClip {
return false
}
// Adjust the start based on the clip rect.
if firstLine < minClip {
firstLine = minClip
}
if lastLine >= maxClip {
lastLine = maxClip - 1
}
edge.Slope = 0
edge.X = x
edge.Winding = winding
edge.FirstLine = firstLine
edge.LastLine = lastLine
return true
}
type VertexData struct {
X, Y float64
ClipFlags int
Line int
}
//! Calculates the edges of the polygon with transformation and clipping to edges array.
/*! Note that this may return upto three times the amount of edges that the polygon has vertices,
* in the unlucky case where both left and right side get clipped for all edges.
* \param edges the array for result edges. This should be able to contain 2*aVertexCount edges.
* \param aTransformation the transformation matrix for the polygon.
* \param aClipRectangle the clip rectangle.
* \return the amount of edges in the result.
*/
func (p Polygon) getScanEdges(edges []PolygonScanEdge, tr [6]float64, clipBound [4]float64) int {
var n int
vertexData := make([]VertexData, len(p)/2+1)
for n = 0; n < len(vertexData)-1; n = n + 1 {
k := n * 2
vertexData[n].X = p[k]*tr[0] + p[k+1]*tr[2] + tr[4]
vertexData[n].Y = p[k]*tr[1] + p[k+1]*tr[3] + tr[5]
// Calculate clip flags for all vertices.
vertexData[n].ClipFlags = POLYGON_CLIP_NONE
if vertexData[n].X < clipBound[0] {
vertexData[n].ClipFlags |= POLYGON_CLIP_LEFT
} else if vertexData[n].X >= clipBound[2] {
vertexData[n].ClipFlags |= POLYGON_CLIP_RIGHT
}
if vertexData[n].Y < clipBound[1] {
vertexData[n].ClipFlags |= POLYGON_CLIP_TOP
} else if vertexData[n].Y >= clipBound[3] {
vertexData[n].ClipFlags |= POLYGON_CLIP_BOTTOM
}
// Calculate line of the vertex. If the vertex is clipped by top or bottom, the line
// is determined by the clip rectangle.
if vertexData[n].ClipFlags&POLYGON_CLIP_TOP != 0 {
vertexData[n].Line = int(clipBound[1])
} else if vertexData[n].ClipFlags&POLYGON_CLIP_BOTTOM != 0 {
vertexData[n].Line = int(clipBound[3] - 1)
} else {
vertexData[n].Line = int(vertexData[n].Y+1) - 1
}
}
// Copy the data from 0 to the last entry to make the data to loop.
vertexData[len(vertexData)-1] = vertexData[0]
// Transform the first vertex; store.
// Process mVertexCount - 1 times, next is n+1
// copy the first vertex to
// Process 1 time, next is n
edgeCount := 0
for n = 0; n < len(vertexData)-1; n++ {
clipSum := vertexData[n].ClipFlags | vertexData[n+1].ClipFlags
clipUnion := vertexData[n].ClipFlags & vertexData[n+1].ClipFlags
if clipUnion&(POLYGON_CLIP_TOP|POLYGON_CLIP_BOTTOM) == 0 &&
vertexData[n].Line != vertexData[n+1].Line {
var startIndex, endIndex int
var winding int16
if vertexData[n].Y < vertexData[n+1].Y {
startIndex = n
endIndex = n + 1
winding = 1
} else {
startIndex = n + 1
endIndex = n
winding = -1
}
firstLine := vertexData[startIndex].Line + 1
lastLine := vertexData[endIndex].Line
if clipUnion&POLYGON_CLIP_RIGHT != 0 {
// Both clip to right, edge is a vertical line on the right side
edges[edgeCount].FirstLine = firstLine
edges[edgeCount].LastLine = lastLine
edges[edgeCount].Winding = winding
edges[edgeCount].X = Fix(clipBound[2] * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = 0
edges[edgeCount].SlopeFix = 0
edgeCount++
} else if clipUnion&POLYGON_CLIP_LEFT != 0 {
// Both clip to left, edge is a vertical line on the left side
edges[edgeCount].FirstLine = firstLine
edges[edgeCount].LastLine = lastLine
edges[edgeCount].Winding = winding
edges[edgeCount].X = Fix(clipBound[0] * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = 0
edges[edgeCount].SlopeFix = 0
edgeCount++
} else if clipSum&(POLYGON_CLIP_RIGHT|POLYGON_CLIP_LEFT) == 0 {
// No clipping in the horizontal direction
slope := (vertexData[endIndex].X -
vertexData[startIndex].X) /
(vertexData[endIndex].Y -
vertexData[startIndex].Y)
// If there is vertical clip (for the top) it will be processed here. The calculation
// should be done for all non-clipping edges as well to determine the accurate position
// where the edge crosses the first scanline.
startx := vertexData[startIndex].X +
(float64(firstLine)-vertexData[startIndex].Y)*slope
edges[edgeCount].FirstLine = firstLine
edges[edgeCount].LastLine = lastLine
edges[edgeCount].Winding = winding
edges[edgeCount].X = Fix(startx * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = Fix(slope * FIXED_FLOAT_COEF)
if lastLine-firstLine >= SLOPE_FIX_STEP {
edges[edgeCount].SlopeFix = Fix(slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) -
edges[edgeCount].Slope<<SLOPE_FIX_SHIFT
} else {
edges[edgeCount].SlopeFix = 0
}
edgeCount++
} else {
// Clips to left or right or both.
slope := (vertexData[endIndex].X -
vertexData[startIndex].X) /
(vertexData[endIndex].Y -
vertexData[startIndex].Y)
// The edge may clip to both left and right.
// The clip results in one or two new vertices, and one to three segments.
// The rounding for scanlines may produce a result where any of the segments is
// ignored.
// The start is always above the end. Calculate the clip positions to clipVertices.
// It is possible that only one of the vertices exist. This will be detected from the
// clip flags of the vertex later, so they are initialized here.
var clipVertices [2]VertexData
if vertexData[startIndex].X <
vertexData[endIndex].X {
clipVertices[0].X = clipBound[0]
clipVertices[1].X = clipBound[2]
clipVertices[0].ClipFlags = POLYGON_CLIP_LEFT
clipVertices[1].ClipFlags = POLYGON_CLIP_RIGHT
} else {
clipVertices[0].X = clipBound[2]
clipVertices[1].X = clipBound[0]
clipVertices[0].ClipFlags = POLYGON_CLIP_RIGHT
clipVertices[1].ClipFlags = POLYGON_CLIP_LEFT
}
var p int
for p = 0; p < 2; p++ {
// Check if either of the vertices crosses the edge marked for the clip vertex
if clipSum&clipVertices[p].ClipFlags != 0 {
// The the vertex is required, calculate it.
clipVertices[p].Y = vertexData[startIndex].Y +
(clipVertices[p].X-
vertexData[startIndex].X)/slope
// If there is clipping in the vertical direction, the new vertex may be clipped.
if clipSum&(POLYGON_CLIP_TOP|POLYGON_CLIP_BOTTOM) != 0 {
if clipVertices[p].Y < clipBound[1] {
clipVertices[p].ClipFlags = POLYGON_CLIP_TOP
clipVertices[p].Line = int(clipBound[1])
} else if clipVertices[p].Y > clipBound[3] {
clipVertices[p].ClipFlags = POLYGON_CLIP_BOTTOM
clipVertices[p].Line = int(clipBound[3] - 1)
} else {
clipVertices[p].ClipFlags = 0
clipVertices[p].Line = int(clipVertices[p].Y+1) - 1
}
} else {
clipVertices[p].ClipFlags = 0
clipVertices[p].Line = int(clipVertices[p].Y+1) - 1
}
}
}
// Now there are three or four vertices, in the top-to-bottom order of start, clip0, clip1,
// end. What kind of edges are required for connecting these can be determined from the
// clip flags.
// -if clip vertex has horizontal clip flags, it doesn't exist. No edge is generated.
// -if start vertex or end vertex has horizontal clip flag, the edge to/from the clip vertex is vertical
// -if the line of two vertices is the same, the edge is not generated, since the edge doesn't
// cross any scanlines.
// The alternative patterns are:
// start - clip0 - clip1 - end
// start - clip0 - end
// start - clip1 - end
var topClipIndex, bottomClipIndex int
if (clipVertices[0].ClipFlags|clipVertices[1].ClipFlags)&
(POLYGON_CLIP_LEFT|POLYGON_CLIP_RIGHT) == 0 {
// Both sides are clipped, the order is start-clip0-clip1-end
topClipIndex = 0
bottomClipIndex = 1
// Add the edge from clip0 to clip1
// Check that the line is different for the vertices.
if clipVertices[0].Line != clipVertices[1].Line {
firstClipLine := clipVertices[0].Line + 1
startx := vertexData[startIndex].X +
(float64(firstClipLine)-vertexData[startIndex].Y)*slope
edges[edgeCount].X = Fix(startx * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = Fix(slope * FIXED_FLOAT_COEF)
edges[edgeCount].FirstLine = firstClipLine
edges[edgeCount].LastLine = clipVertices[1].Line
edges[edgeCount].Winding = winding
if edges[edgeCount].LastLine-edges[edgeCount].FirstLine >= SLOPE_FIX_STEP {
edges[edgeCount].SlopeFix = Fix(slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) -
edges[edgeCount].Slope<<SLOPE_FIX_SHIFT
} else {
edges[edgeCount].SlopeFix = 0
}
edgeCount++
}
} else {
// Clip at either side, check which side. The clip flag is on for the vertex
// that doesn't exist, i.e. has not been clipped to be inside the rect.
if clipVertices[0].ClipFlags&(POLYGON_CLIP_LEFT|POLYGON_CLIP_RIGHT) != 0 {
topClipIndex = 1
bottomClipIndex = 1
} else {
topClipIndex = 0
bottomClipIndex = 0
}
}
// Generate the edges from start - clip top and clip bottom - end
// Clip top and clip bottom may be the same vertex if there is only one
// clipped vertex.
// Check that the line is different for the vertices.
if vertexData[startIndex].Line != clipVertices[topClipIndex].Line {
edges[edgeCount].FirstLine = firstLine
edges[edgeCount].LastLine = clipVertices[topClipIndex].Line
edges[edgeCount].Winding = winding
// If startIndex is clipped, the edge is a vertical one.
if vertexData[startIndex].ClipFlags&(POLYGON_CLIP_LEFT|POLYGON_CLIP_RIGHT) != 0 {
edges[edgeCount].X = Fix(clipVertices[topClipIndex].X * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = 0
edges[edgeCount].SlopeFix = 0
} else {
startx := vertexData[startIndex].X +
(float64(firstLine)-vertexData[startIndex].Y)*slope
edges[edgeCount].X = Fix(startx * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = Fix(slope * FIXED_FLOAT_COEF)
if edges[edgeCount].LastLine-edges[edgeCount].FirstLine >= SLOPE_FIX_STEP {
edges[edgeCount].SlopeFix = Fix(slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) -
edges[edgeCount].Slope<<SLOPE_FIX_SHIFT
} else {
edges[edgeCount].SlopeFix = 0
}
}
edgeCount++
}
// Check that the line is different for the vertices.
if clipVertices[bottomClipIndex].Line != vertexData[endIndex].Line {
firstClipLine := clipVertices[bottomClipIndex].Line + 1
edges[edgeCount].FirstLine = firstClipLine
edges[edgeCount].LastLine = lastLine
edges[edgeCount].Winding = winding
// If endIndex is clipped, the edge is a vertical one.
if vertexData[endIndex].ClipFlags&(POLYGON_CLIP_LEFT|POLYGON_CLIP_RIGHT) != 0 {
edges[edgeCount].X = Fix(clipVertices[bottomClipIndex].X * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = 0
edges[edgeCount].SlopeFix = 0
} else {
startx := vertexData[startIndex].X +
(float64(firstClipLine)-vertexData[startIndex].Y)*slope
edges[edgeCount].X = Fix(startx * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = Fix(slope * FIXED_FLOAT_COEF)
if edges[edgeCount].LastLine-edges[edgeCount].FirstLine >= SLOPE_FIX_STEP {
edges[edgeCount].SlopeFix = Fix(slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) -
edges[edgeCount].Slope<<SLOPE_FIX_SHIFT
} else {
edges[edgeCount].SlopeFix = 0
}
}
edgeCount++
}
}
}
}
return edgeCount
}

View File

@ -1,193 +0,0 @@
package raster
import (
"image"
"image/color"
"testing"
"code.google.com/p/freetype-go/freetype/raster"
"github.com/llgcode/draw2d/draw2dbase"
"github.com/llgcode/draw2d/draw2dimg"
)
var flatteningThreshold = 0.5
type Path struct {
points []float64
}
func (p *Path) LineTo(x, y float64) {
if len(p.points)+2 > cap(p.points) {
points := make([]float64, len(p.points)+2, len(p.points)+32)
copy(points, p.points)
p.points = points
} else {
p.points = p.points[0 : len(p.points)+2]
}
p.points[len(p.points)-2] = x
p.points[len(p.points)-1] = y
}
func TestFreetype(t *testing.T) {
var p Path
p.LineTo(10, 190)
draw2dbase.TraceCubic(&p, []float64{10, 190, 10, 10, 190, 10, 190, 190}, 0.5)
poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff}
img := image.NewRGBA(image.Rect(0, 0, 200, 200))
rasterizer := raster.NewRasterizer(200, 200)
rasterizer.UseNonZeroWinding = false
rasterizer.Start(raster.Point{
X: raster.Fix32(10 * 256),
Y: raster.Fix32(190 * 256)})
for j := 0; j < len(poly); j = j + 2 {
rasterizer.Add1(raster.Point{
X: raster.Fix32(poly[j] * 256),
Y: raster.Fix32(poly[j+1] * 256)})
}
painter := raster.NewRGBAPainter(img)
painter.SetColor(color)
rasterizer.Rasterize(painter)
draw2dimg.SaveToPngFile("../output/raster/TestFreetype.png", img)
}
func TestFreetypeNonZeroWinding(t *testing.T) {
var p Path
p.LineTo(10, 190)
draw2dbase.TraceCubic(&p, []float64{10, 190, 10, 10, 190, 10, 190, 190}, 0.5)
poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff}
img := image.NewRGBA(image.Rect(0, 0, 200, 200))
rasterizer := raster.NewRasterizer(200, 200)
rasterizer.UseNonZeroWinding = true
rasterizer.Start(raster.Point{
X: raster.Fix32(10 * 256),
Y: raster.Fix32(190 * 256)})
for j := 0; j < len(poly); j = j + 2 {
rasterizer.Add1(raster.Point{
X: raster.Fix32(poly[j] * 256),
Y: raster.Fix32(poly[j+1] * 256)})
}
painter := raster.NewRGBAPainter(img)
painter.SetColor(color)
rasterizer.Rasterize(painter)
draw2dimg.SaveToPngFile("../output/raster/TestFreetypeNonZeroWinding.png", img)
}
func TestRasterizer(t *testing.T) {
img := image.NewRGBA(image.Rect(0, 0, 200, 200))
var p Path
p.LineTo(10, 190)
draw2dbase.TraceCubic(&p, []float64{10, 190, 10, 10, 190, 10, 190, 190}, 0.5)
poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0}
r := NewRasterizer8BitsSample(200, 200)
//PolylineBresenham(img, image.Black, poly...)
r.RenderEvenOdd(img, &color, &poly, tr)
draw2dimg.SaveToPngFile("../output/raster/TestRasterizer.png", img)
}
func TestRasterizerNonZeroWinding(t *testing.T) {
img := image.NewRGBA(image.Rect(0, 0, 200, 200))
var p Path
p.LineTo(10, 190)
draw2dbase.TraceCubic(&p, []float64{10, 190, 10, 10, 190, 10, 190, 190}, 0.5)
poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0}
r := NewRasterizer8BitsSample(200, 200)
//PolylineBresenham(img, image.Black, poly...)
r.RenderNonZeroWinding(img, &color, &poly, tr)
draw2dimg.SaveToPngFile("../output/raster/TestRasterizerNonZeroWinding.png", img)
}
func BenchmarkFreetype(b *testing.B) {
var p Path
p.LineTo(10, 190)
draw2dbase.TraceCubic(&p, []float64{10, 190, 10, 10, 190, 10, 190, 190}, 0.5)
poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff}
for i := 0; i < b.N; i++ {
img := image.NewRGBA(image.Rect(0, 0, 200, 200))
rasterizer := raster.NewRasterizer(200, 200)
rasterizer.UseNonZeroWinding = false
rasterizer.Start(raster.Point{
X: raster.Fix32(10 * 256),
Y: raster.Fix32(190 * 256)})
for j := 0; j < len(poly); j = j + 2 {
rasterizer.Add1(raster.Point{
X: raster.Fix32(poly[j] * 256),
Y: raster.Fix32(poly[j+1] * 256)})
}
painter := raster.NewRGBAPainter(img)
painter.SetColor(color)
rasterizer.Rasterize(painter)
}
}
func BenchmarkFreetypeNonZeroWinding(b *testing.B) {
var p Path
p.LineTo(10, 190)
draw2dbase.TraceCubic(&p, []float64{10, 190, 10, 10, 190, 10, 190, 190}, 0.5)
poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff}
for i := 0; i < b.N; i++ {
img := image.NewRGBA(image.Rect(0, 0, 200, 200))
rasterizer := raster.NewRasterizer(200, 200)
rasterizer.UseNonZeroWinding = true
rasterizer.Start(raster.Point{
X: raster.Fix32(10 * 256),
Y: raster.Fix32(190 * 256)})
for j := 0; j < len(poly); j = j + 2 {
rasterizer.Add1(raster.Point{
X: raster.Fix32(poly[j] * 256),
Y: raster.Fix32(poly[j+1] * 256)})
}
painter := raster.NewRGBAPainter(img)
painter.SetColor(color)
rasterizer.Rasterize(painter)
}
}
func BenchmarkRasterizerNonZeroWinding(b *testing.B) {
var p Path
p.LineTo(10, 190)
draw2dbase.TraceCubic(&p, []float64{10, 190, 10, 10, 190, 10, 190, 190}, 0.5)
poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0}
for i := 0; i < b.N; i++ {
img := image.NewRGBA(image.Rect(0, 0, 200, 200))
rasterizer := NewRasterizer8BitsSample(200, 200)
rasterizer.RenderNonZeroWinding(img, &color, &poly, tr)
}
}
func BenchmarkRasterizer(b *testing.B) {
var p Path
p.LineTo(10, 190)
draw2dbase.TraceCubic(&p, []float64{10, 190, 10, 10, 190, 10, 190, 190}, 0.5)
poly := Polygon(p.points)
color := color.RGBA{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0}
for i := 0; i < b.N; i++ {
img := image.NewRGBA(image.Rect(0, 0, 200, 200))
rasterizer := NewRasterizer8BitsSample(200, 200)
rasterizer.RenderEvenOdd(img, &color, &poly, tr)
}
}