This commit is contained in:
legoff.laurent 2010-12-06 09:29:44 +00:00
parent 7e5c4132b6
commit baa71dfa7e
27 changed files with 2898 additions and 0 deletions

17
draw2d/.project Normal file
View File

@ -0,0 +1,17 @@
<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
<name>draw2d</name>
<comment></comment>
<projects>
</projects>
<buildSpec>
<buildCommand>
<name>com.googlecode.goclipse.goBuilder</name>
<arguments>
</arguments>
</buildCommand>
</buildSpec>
<natures>
<nature>goclipse.goNature</nature>
</natures>
</projectDescription>

1
draw2d/AUTHORS Normal file
View File

@ -0,0 +1 @@
Laurent Le Goff

35
draw2d/README Normal file
View File

@ -0,0 +1,35 @@
This package (written in *[http://golang.org go]*) provide an API to draw 2d geometrical form on [http://golang.org/pkg/image/ images].
This library is largely inspired by [http://www.tailrecursive.org/postscript/ postscript], [http://cairographics.org/ cairo], [http://dev.w3.org/html5/canvas-api/canvas-2d-api.html#the-2d-drawing-context HTML5 canvas].
The package depends on [http://code.google.com/p/freetype-go/ freetype-go] package thanks to its rasterization algorithm.
Some algorithm have been translated from http://www.antigrain.com project ([http://www.antigrain.com/research/adaptive_bezier/index.html adaptive bezier], and arc drawing)
=== Installation ====
Once you have Go installed, to install draw2d:
* First see the installation procedure of [http://code.google.com/p/freetype-go/ freetype-go]
* goinstall draw2d.googlecode.com/svn/trunk/draw2d/src/pkg/draw2d
a good starting point is the [http://code.google.com/p/draw2d/wiki/GettingStarted getting started]
=== [http://code.google.com/p/draw2d/wiki/Samples Samples] ===
Sample images generated by draw2d (inspired by [http://cairographics.org/samples/ cairo samples]):
there's already some bugs please refer to [http://code.google.com/p/draw2d/issues/list issue tracking]
[http://draw2d.googlecode.com/svn/wiki/test_results/TestPath.png]
[http://draw2d.googlecode.com/svn/wiki/test_results/TestDrawArc.png]
[http://draw2d.googlecode.com/svn/wiki/test_results/TestDrawArcNegative.png]
[http://draw2d.googlecode.com/svn/wiki/test_results/TestCurveRectangle.png]
[http://draw2d.googlecode.com/svn/wiki/test_results/TestDrawCubicCurve.png]
[http://draw2d.googlecode.com/svn/wiki/test_results/TestDash.png]
[http://draw2d.googlecode.com/svn/wiki/test_results/TestFillStroke.png]
[http://draw2d.googlecode.com/svn/wiki/test_results/TestFillStyle.png]
[http://draw2d.googlecode.com/svn/wiki/test_results/TestMultiSegmentCaps.png]
[http://draw2d.googlecode.com/svn/wiki/test_results/TestRoundRectangle.png]
[http://draw2d.googlecode.com/svn/wiki/test_results/TestLineCap.png]
[http://draw2d.googlecode.com/svn/wiki/test_results/TestLineJoin.png]

165
draw2d/lgpl.txt Normal file
View File

@ -0,0 +1,165 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

16
draw2d/src/cmd/Makefile Normal file
View File

@ -0,0 +1,16 @@
include $(GOROOT)/src/Make.inc
TARG=gettingStarted testdraw2d testPath
OFILES=$(TARG:%=%.$O)
all: $(TARG)
$(TARG): %: %.$O
$(LD) -o $@ $<
$(OFILES): %.$O: %.go Makefile
$(GC) -o $@ $<
clean:
rm -f *.[$(OS)] $(TARG) $(CLEANFILES)

View File

@ -0,0 +1,47 @@
// Copyright 2010 The draw2d Authors. All rights reserved.
// created: 21/11/2010 by Laurent Le Goff
package main
import (
"fmt"
"log"
"os"
"bufio"
"image"
"image/png"
"draw2d"
//"draw2d.googlecode.com/svn/trunk/draw2d/src/pkg/draw2d"
)
func saveToPngFile(filePath string, m image.Image) {
f, err := os.Open(filePath, os.O_CREAT|os.O_WRONLY, 0600)
if err != nil {
log.Println(err)
os.Exit(1)
}
defer f.Close()
b := bufio.NewWriter(f)
err = png.Encode(b, m)
if err != nil {
log.Println(err)
os.Exit(1)
}
err = b.Flush()
if err != nil {
log.Println(err)
os.Exit(1)
}
fmt.Printf("Wrote %s OK.\n", filePath)
}
func main() {
i := image.NewRGBA(200, 200)
gc := draw2d.NewGraphicContext(i)
gc.MoveTo(10.0, 10.0)
gc.LineTo(100.0, 10.0)
gc.Stroke()
saveToPngFile("TestPath.png", i)
}

View File

@ -0,0 +1,18 @@
<!DOCTYPE HTML>
<html>
<head>
<style type="text/css">
canvas { border: 1px solid black; }
</style>
<title>Canvas tutorial</title>
<script type="text/javascript" src="test.js">
</script>
</head>
<body onload="executeTests()">
<p>TestStar</p>
<canvas id="TestStar" width="400" height="400"></canvas>
<p>TestTransform</p>
<canvas id="TestTransform" width="400" height="400"></canvas>
<canvas id="TestPathTransform" width="400" height="400"></canvas>
</body>
</html>

View File

@ -0,0 +1,79 @@
%!
% Example of rotation... draws 36 lines in a circular pattern
0 10 360 { % Go from 0 to 360 degrees in 10 degree steps
newpath % Start a new path
gsave
5 setlinewidth % Keep rotations temporary
144 144 moveto
rotate % Rotate by degrees on stack from 'for'
72 0 rlineto
stroke
grestore % Get back the unrotated state
} for % Iterate over angles
showpage
/box {
newpath
moveto
72 0 rlineto
0 72 rlineto
-72 0 rlineto
closepath
} def
% Specify font for text labels
/Helvetica findfont 40 scalefont setfont
gsave
40 40 translate % Set origin to (40, 40)
0 0 box stroke % Draw box at new origin...
77 0 moveto
(Translated) show % and label
grestore
gsave
100 150 translate % Translate origin to (100, 150)
30 rotate % Rotate counter-clockwise by 30 degrees
0 0 box stroke % Draw box...
75 0 moveto
(Translated & Rotated) show % and label
grestore
gsave
40 300 translate % Translate to (40, 300)
0.5 1 scale % Reduce x coord by 1/2, y coord left alone
0 0 box stroke % Draw box...
75 0 moveto
(Translated & Squished) show % and label
grestore
gsave
100 450 translate % Set origin to (300, 300)
45 rotate % Rotate coordinates by 45 degrees
0.5 1 scale % Scale coordinates
0 0 box stroke % Draw box
75 0 moveto
(Everything) show
grestore
showpage
gsave
20 setlinewidth
0 100 moveto
100 100 lineto
1 4 scale
200 100 lineto
stroke
200 50 50 0 361 arc
stroke
grestore
showpage

View File

@ -0,0 +1,101 @@
function toDegree(radians) {
return radians * 180 / Math.PI;
}
function toRadians(degree) {
return degree * Math.PI / 180;
}
function draw(test){
var canvas = document.getElementById(test.name);
if (canvas.getContext){
var gc = canvas.getContext('2d');
test(gc)
}
}
function executeTests() {
draw(TestStar)
draw(TestTransform)
draw(TestPathTransform)
}
function TestStar(gc) {
for(i = 0.0 ; i < 360; i = i + 10) {// Go from 0 to 360 degrees in 10 degree steps
gc.beginPath() // Start a new path
gc.save() // Keep rotations temporary
gc.lineWidth = 5
gc.translate(144, 144)
gc.rotate(i * (Math.PI / 180.0)) // Rotate by degrees on stack from 'for'
gc.moveTo(0, 0)
gc.lineTo(72, 0)
gc.stroke()
gc.restore() // Get back the unrotated state
}
}
function TestTransform(gc) {
gc.save()
gc.translate(40, 40) // Set origin to (40, 40)
gc.beginPath()
gc.moveTo(0,0)
gc.lineTo(72,0)
gc.lineTo(72, 72)
gc.lineTo(0, 72)
gc.closePath()
gc.stroke()
gc.restore()
gc.save()
gc.translate(100, 150) // Translate origin to (100, 150)
gc.rotate(30* (Math.PI / 180.0)) // Rotate counter-clockwise by 30 degrees
gc.beginPath()
gc.moveTo(0,0)
gc.lineTo(72,0)
gc.lineTo(72, 72)
gc.lineTo(0, 72)
gc.closePath() // Draw box...
gc.stroke()
gc.restore()
gc.save()
gc.translate(40, 300) // Translate to (40, 300)
gc.scale(0.5, 1) // Reduce x coord by 1/2, y coord left alone
gc.beginPath()
gc.moveTo(0,0)
gc.lineTo(72,0)
gc.lineTo(72, 72)
gc.lineTo(0, 72)
gc.closePath() // Draw box...
gc.stroke()
gc.restore()
gc.save()
gc.translate(300, 300) // Set origin to (300, 300)
gc.rotate(45* (Math.PI / 180.0)) // Rotate coordinates by 45 degrees
gc.scale(0.5, 1) // Scale coordinates
gc.beginPath()
gc.moveTo(0,0)
gc.lineTo(72,0)
gc.lineTo(72, 72)
gc.lineTo(0, 72)
gc.closePath() // Draw box
gc.stroke()
gc.restore()
}
function TestPathTransform(gc) {
gc.lineWidth = 20
gc.moveTo(0,100)
gc.lineTo(100,100)
gc.scale(1,4)
gc.lineTo(200,100)
gc.stroke()
gc.beginPath()
gc.arc(200, 50, 50, 0, 6.28, false)
gc.stroke()
}

View File

@ -0,0 +1,98 @@
package main
import (
"fmt"
"log"
"os"
"bufio"
"time"
"math"
"image"
"image/png"
"draw2d"
//"draw2d.googlecode.com/svn/trunk/draw2d/src/pkg/draw2d"
)
const (
width, height = 500, 500
)
var (
lastTime int64
folder = "../../../../wiki/test_results/"
)
func initGc(w, h int) (image.Image, *draw2d.GraphicContext) {
i := image.NewRGBA(w, h)
gc := draw2d.NewGraphicContext(i)
lastTime = time.Nanoseconds()
gc.SetStrokeColor(image.Black)
gc.SetFillColor(image.White)
// fill the background
//gc.Clear()
return i, gc
}
func saveToPngFile(TestName string, m image.Image) {
dt := time.Nanoseconds() - lastTime
fmt.Printf("%s during: %f ms\n", TestName, float(dt)*10e-6)
filePath := folder + TestName + ".png"
f, err := os.Open(filePath, os.O_CREAT|os.O_WRONLY, 0600)
if err != nil {
log.Println(err)
os.Exit(1)
}
defer f.Close()
b := bufio.NewWriter(f)
err = png.Encode(b, m)
if err != nil {
log.Println(err)
os.Exit(1)
}
err = b.Flush()
if err != nil {
log.Println(err)
os.Exit(1)
}
fmt.Printf("Wrote %s OK.\n", filePath)
}
func android(gc *draw2d.GraphicContext, x, y float) {
gc.SetLineCap(draw2d.RoundCap)
gc.SetLineWidth(5)
gc.ArcTo(x+80, y+70, 50, 50, 180 * (math.Pi/180), 360 * (math.Pi/180)) // head
gc.FillStroke()
gc.MoveTo(x+60, y+25)
gc.LineTo(x+50, y+10)
gc.MoveTo(x+100, y+25)
gc.LineTo( x+110, y+10)
gc.Stroke()
gc.Circle(x+60, y+45, 5) // left eye
gc.FillStroke()
gc.Circle(x+100, y+45, 5) // right eye
gc.FillStroke()
gc.RoundRect(x+30, y+75, x+30+100, y+75+90, 10, 10) // body
gc.FillStroke()
gc.Rect(x+30, y+75, x+30+100, y+75+80)
gc.FillStroke()
gc.RoundRect(x+5, y+80, x+5+20, y+80+70, 10, 10) // left arm
gc.FillStroke()
gc.RoundRect(x+135, y+80, x+135+20, y+80+70, 10, 10) // right arm
gc.FillStroke()
gc.RoundRect(x+50, y+150, x+50+20, y+150+50, 10, 10) // left leg
gc.FillStroke()
gc.RoundRect(x+90, y+150, x+90+20, y+150+50, 10, 10) // right leg
gc.FillStroke()
}
func main() {
i, gc := initGc(width, height)
android(gc, 100, 100)
saveToPngFile("TestAndroid", i)
}

View File

@ -0,0 +1,515 @@
// Copyright 2010 The draw2d Authors. All rights reserved.
// created: 21/11/2010 by Laurent Le Goff
package main
import (
"fmt"
"log"
"os"
"bufio"
"time"
"math"
"image"
"image/png"
"draw2d"
//"draw2d.googlecode.com/svn/trunk/draw2d/src/pkg/draw2d"
)
const (
w, h = 256, 256
)
var (
lastTime int64
folder = "../../../../wiki/test_results/"
)
func initGc(w, h int) (image.Image, *draw2d.GraphicContext) {
i := image.NewRGBA(w, h)
gc := draw2d.NewGraphicContext(i)
lastTime = time.Nanoseconds()
gc.SetStrokeColor(image.Black)
gc.SetFillColor(image.White)
// fill the background
//gc.Clear()
return i, gc
}
func saveToPngFile(TestName string, m image.Image) {
dt := time.Nanoseconds() - lastTime
fmt.Printf("%s during: %f ms\n", TestName, float(dt)*10e-6)
filePath := folder + TestName + ".png"
f, err := os.Open(filePath, os.O_CREAT|os.O_WRONLY, 0600)
if err != nil {
log.Println(err)
os.Exit(1)
}
defer f.Close()
b := bufio.NewWriter(f)
err = png.Encode(b, m)
if err != nil {
log.Println(err)
os.Exit(1)
}
err = b.Flush()
if err != nil {
log.Println(err)
os.Exit(1)
}
fmt.Printf("Wrote %s OK.\n", filePath)
}
/*
<img src="../test_results/TestPath.png"/>
*/
func TestPath() {
i, gc := initGc(w, h)
gc.SetLineWidth(10)
gc.Translate(10,10)
gc.MoveTo(0.0, 0.0)
gc.LineTo(100.0, 00.0)
gc.LineTo(100.0, 100.0)
gc.LineTo(0.0, 100.0)
gc.LineTo(0.0, 0.0)
gc.FillStroke()
saveToPngFile("TestPath", i)
}
func cos(f float) float {
return float(math.Cos(float64(f)))
}
func sin(f float) float {
return float(math.Sin(float64(f)))
}
/*
<img src="../test_results/TestDrawArc.png"/>
*/
func TestDrawArc() {
i, gc := initGc(w, h)
// draw an arc
xc, yc := 128.0, 128.0
radiusX, radiusY := 100.0, 100.0
startAngle := 45.0 * (math.Pi / 180.0) /* angles are specified */
angle := 135 * (math.Pi / 180.0) /* in radians */
gc.SetLineWidth(10)
gc.SetLineCap(draw2d.ButtCap)
gc.SetStrokeColor(image.Black)
gc.ArcTo(xc, yc, radiusX, radiusY, startAngle, angle)
gc.Stroke()
// fill a circle
gc.SetStrokeColor(image.RGBAColor{255, 0x33, 0x33, 0x80})
gc.SetFillColor(image.RGBAColor{255, 0x33, 0x33, 0x80})
gc.SetLineWidth(6)
gc.MoveTo(xc, yc)
gc.LineTo(xc+cos(startAngle)*radiusX, yc+sin(startAngle)*radiusY)
gc.MoveTo(xc, yc)
gc.LineTo(xc-radiusX, yc)
gc.Stroke()
gc.ArcTo(xc, yc, 10.0, 10.0, 0, 2*math.Pi)
gc.Fill()
saveToPngFile("TestDrawArc", i)
}
/*
<img src="../test_results/TestDrawArc.png"/>
*/
func TestDrawArcNegative() {
i, gc := initGc(w, h)
// draw an arc
xc, yc := 128.0, 128.0
radiusX, radiusY := 100.0, 100.0
startAngle := 45.0 * (math.Pi / 180.0) /* angles are specified */
angle := -225 * (math.Pi / 180.0) /* in radians */
gc.SetLineWidth(10)
gc.SetLineCap(draw2d.ButtCap)
gc.SetStrokeColor(image.Black)
gc.ArcTo(xc, yc, radiusX, radiusY, startAngle, angle)
gc.Stroke()
// fill a circle
gc.SetStrokeColor(image.RGBAColor{255, 0x33, 0x33, 0x80})
gc.SetFillColor(image.RGBAColor{255, 0x33, 0x33, 0x80})
gc.SetLineWidth(6)
gc.MoveTo(xc, yc)
gc.LineTo(xc+cos(startAngle)*radiusX, yc+sin(startAngle)*radiusY)
gc.MoveTo(xc, yc)
gc.LineTo(xc-radiusX, yc)
gc.Stroke()
gc.ArcTo(xc, yc, 10.0, 10.0, 0, 2*math.Pi)
gc.Fill()
saveToPngFile("TestDrawArcNegative", i)
}
func TestCurveRectangle() {
i, gc := initGc(w, h)
/* a custom shape that could be wrapped in a function */
x0, y0 := 25.6, 25.6 /* parameters like cairo_rectangle */
rect_width, rect_height := 204.8, 204.8
radius := 102.4 /* and an approximate curvature radius */
x1 := x0 + rect_width
y1 := y0 + rect_height
if rect_width/2 < radius {
if rect_height/2 < radius {
gc.MoveTo(x0, (y0+y1)/2)
gc.CubicCurveTo(x0, y0, x0, y0, (x0+x1)/2, y0)
gc.CubicCurveTo(x1, y0, x1, y0, x1, (y0+y1)/2)
gc.CubicCurveTo(x1, y1, x1, y1, (x1+x0)/2, y1)
gc.CubicCurveTo(x0, y1, x0, y1, x0, (y0+y1)/2)
} else {
gc.MoveTo(x0, y0+radius)
gc.CubicCurveTo(x0, y0, x0, y0, (x0+x1)/2, y0)
gc.CubicCurveTo(x1, y0, x1, y0, x1, y0+radius)
gc.LineTo(x1, y1-radius)
gc.CubicCurveTo(x1, y1, x1, y1, (x1+x0)/2, y1)
gc.CubicCurveTo(x0, y1, x0, y1, x0, y1-radius)
}
} else {
if rect_height/2 < radius {
gc.MoveTo(x0, (y0+y1)/2)
gc.CubicCurveTo(x0, y0, x0, y0, x0+radius, y0)
gc.LineTo(x1-radius, y0)
gc.CubicCurveTo(x1, y0, x1, y0, x1, (y0+y1)/2)
gc.CubicCurveTo(x1, y1, x1, y1, x1-radius, y1)
gc.LineTo(x0+radius, y1)
gc.CubicCurveTo(x0, y1, x0, y1, x0, (y0+y1)/2)
} else {
gc.MoveTo(x0, y0+radius)
gc.CubicCurveTo(x0, y0, x0, y0, x0+radius, y0)
gc.LineTo(x1-radius, y0)
gc.CubicCurveTo(x1, y0, x1, y0, x1, y0+radius)
gc.LineTo(x1, y1-radius)
gc.CubicCurveTo(x1, y1, x1, y1, x1-radius, y1)
gc.LineTo(x0+radius, y1)
gc.CubicCurveTo(x0, y1, x0, y1, x0, y1-radius)
}
}
gc.ClosePath()
gc.SetFillColor(image.RGBAColor{0x80, 0x80, 0xFF, 0xFF})
gc.SetStrokeColor(image.RGBAColor{0x80, 0, 0, 0x80})
gc.SetLineWidth(10.0)
gc.FillStroke()
saveToPngFile("TestCurveRectangle", i)
}
/*
<img src="../test_results/TestDrawCubicCurve.png"/>
*/
func TestDrawCubicCurve() {
i, gc := initGc(800, 600)
// draw a cubic curve
x, y := 25.6, 128.0
x1, y1 := 102.4, 230.4
x2, y2 := 153.6, 25.6
x3, y3 := 230.4, 128.0
gc.SetFillColor(image.RGBAColor{0xAA, 0xAA, 0xAA, 0xFF})
gc.SetLineWidth(5)
gc.MoveTo(x, y)
gc.CubicCurveTo(x1, y1, x2, y2, x3, y3)
gc.Stroke()
gc.SetStrokeColor(image.RGBAColor{0xFF, 0x33, 0x33, 0x88})
gc.SetLineWidth(6)
// draw segment of curve
gc.MoveTo(x, y)
gc.LineTo(x1, y1)
gc.LineTo(x2, y2)
gc.LineTo(x3, y3)
gc.Stroke()
saveToPngFile("TestDrawCubicCurve", i)
}
/*
<img src="../test_results/TestDash.png"/>
*/
func TestDash() {
i, gc := initGc(w, h)
gc.SetLineDash([]float{50, 10, 10, 10}, -50.0)
gc.SetLineCap(draw2d.ButtCap)
gc.SetLineJoin(draw2d.BevelJoin)
gc.SetLineWidth(10)
gc.MoveTo(128.0, 25.6)
gc.LineTo(128.0, 25.6)
gc.LineTo(230.4, 230.4)
gc.RLineTo(-102.4, 0.0)
gc.CubicCurveTo(51.2, 230.4, 51.2, 128.0, 128.0, 128.0)
gc.Stroke()
gc.SetLineDash(nil, 0.0)
saveToPngFile("TestDash", i)
}
/*
<img src="../test_results/TestFillStroke.png"/>
*/
func TestFillStroke() {
i, gc := initGc(w, h)
gc.MoveTo(128.0, 25.6)
gc.LineTo(230.4, 230.4)
gc.RLineTo(-102.4, 0.0)
gc.CubicCurveTo(51.2, 230.4, 51.2, 128.0, 128.0, 128.0)
gc.ClosePath()
gc.MoveTo(64.0, 25.6)
gc.RLineTo(51.2, 51.2)
gc.RLineTo(-51.2, 51.2)
gc.RLineTo(-51.2, -51.2)
gc.ClosePath()
gc.SetLineWidth(10.0)
gc.SetFillColor(image.RGBAColor{0, 0, 0xFF, 0xFF})
gc.SetStrokeColor(image.Black)
gc.FillStroke()
saveToPngFile("TestFillStroke", i)
}
/*
<img src="../test_results/TestFillStyle.png"/>
*/
func TestFillStyle() {
i, gc := initGc(w, h)
gc.SetLineWidth(6)
gc.Rect(12, 12, 244, 70)
wheel1 := new(draw2d.Path)
wheel1.ArcTo(64, 64, 40, 40, 0, 2*math.Pi)
wheel2 := new(draw2d.Path)
wheel2.ArcTo(192, 64, 40, 40, 0, 2*math.Pi)
gc.SetFillRule(draw2d.FillRuleEvenOdd)
gc.SetFillColor(image.RGBAColor{0, 0xB2, 0, 0xFF})
gc.SetStrokeColor(image.Black)
gc.FillStroke(wheel1, wheel2)
gc.Rect(12, 140, 244, 198)
wheel1 = new(draw2d.Path)
wheel1.ArcTo(64, 192, 40, 40, 0, 2*math.Pi)
wheel2 = new(draw2d.Path)
wheel2.ArcTo(192, 192, 40, 40, 0, -2*math.Pi)
gc.SetFillRule(draw2d.FillRuleWinding)
gc.SetFillColor(image.RGBAColor{0, 0, 0xE5, 0xFF})
gc.FillStroke(wheel1, wheel2)
saveToPngFile("TestFillStyle", i)
}
func TestMultiSegmentCaps() {
i, gc := initGc(w, h)
gc.MoveTo(50.0, 75.0)
gc.LineTo(200.0, 75.0)
gc.MoveTo(50.0, 125.0)
gc.LineTo(200.0, 125.0)
gc.MoveTo(50.0, 175.0)
gc.LineTo(200.0, 175.0)
gc.SetLineWidth(30.0)
gc.SetLineCap(draw2d.RoundCap)
gc.Stroke()
saveToPngFile("TestMultiSegmentCaps", i)
}
func TestRoundRectangle() {
i, gc := initGc(w, h)
/* a custom shape that could be wrapped in a function */
x, y := 25.6, 25.6
width, height := 204.8, 204.8
aspect := 1.0 /* aspect ratio */
corner_radius := height / 10.0 /* and corner curvature radius */
radius := corner_radius / aspect
degrees := math.Pi / 180.0
gc.ArcTo(x+width-radius, y+radius, radius, radius, -90*degrees, 90*degrees)
gc.ArcTo(x+width-radius, y+height-radius, radius, radius, 0*degrees, 90*degrees)
gc.ArcTo(x+radius, y+height-radius, radius, radius, 90*degrees, 90*degrees)
gc.ArcTo(x+radius, y+radius, radius, radius, 180*degrees, 90*degrees)
gc.ClosePath()
gc.SetFillColor(image.RGBAColor{0x80, 0x80, 0xFF, 0xFF})
gc.SetStrokeColor(image.RGBAColor{0x80, 0, 0, 0x80})
gc.SetLineWidth(10.0)
gc.FillStroke()
saveToPngFile("TestRoundRectangle", i)
}
func TestLineCap() {
i, gc := initGc(w, h)
gc.SetLineWidth(30.0)
gc.SetLineCap(draw2d.ButtCap)
gc.MoveTo(64.0, 50.0)
gc.LineTo(64.0, 200.0)
gc.Stroke()
gc.SetLineCap(draw2d.RoundCap)
gc.MoveTo(128.0, 50.0)
gc.LineTo(128.0, 200.0)
gc.Stroke()
gc.SetLineCap(draw2d.SquareCap)
gc.MoveTo(192.0, 50.0)
gc.LineTo(192.0, 200.0)
gc.Stroke()
/* draw helping lines */
gc.SetStrokeColor(image.RGBAColor{0xFF, 0x33, 0x33, 0xFF})
gc.SetLineWidth(2.56)
gc.MoveTo(64.0, 50.0)
gc.LineTo(64.0, 200.0)
gc.MoveTo(128.0, 50.0)
gc.LineTo(128.0, 200.0)
gc.MoveTo(192.0, 50.0)
gc.LineTo(192.0, 200.0)
gc.Stroke()
saveToPngFile("TestLineCap", i)
}
func TestLineJoin() {
i, gc := initGc(w, h)
gc.SetLineWidth(40)
gc.MoveTo(76.8, 84.48)
gc.RLineTo(51.2, -51.2)
gc.RLineTo(51.2, 51.2)
gc.SetLineJoin(draw2d.MiterJoin) /* default */
gc.Stroke()
gc.MoveTo(76.8, 161.28)
gc.RLineTo(51.2, -51.2)
gc.RLineTo(51.2, 51.2)
gc.SetLineJoin(draw2d.BevelJoin)
gc.Stroke()
gc.MoveTo(76.8, 238.08)
gc.RLineTo(51.2, -51.2)
gc.RLineTo(51.2, 51.2)
gc.SetLineJoin(draw2d.RoundJoin)
gc.Stroke()
saveToPngFile("TestLineJoin", i)
}
func TestBubble() {
i, gc := initGc(w, h)
gc.BeginPath()
gc.MoveTo(75,25)
gc.QuadCurveTo(25,25,25,62.5)
gc.QuadCurveTo(25,100,50,100)
gc.QuadCurveTo(50,120,30,125)
gc.QuadCurveTo(60,120,65,100)
gc.QuadCurveTo(125,100,125,62.5)
gc.QuadCurveTo(125,25,75,25)
gc.Stroke()
saveToPngFile("TestBubble", i)
}
func TestStar() {
i, gc := initGc(w, h)
for i := 0.0 ; i < 360; i = i + 10 {// Go from 0 to 360 degrees in 10 degree steps
gc.Save()
gc.SetLineWidth(5) // Keep rotations temporary
gc.Translate(144, 144)
gc.Rotate(i * (math.Pi / 180.0)) // Rotate by degrees on stack from 'for'
gc.MoveTo(0, 0)
gc.LineTo(72, 0)
gc.Stroke()
gc.Restore() // Get back the unrotated state
}
saveToPngFile("TestStar", i)
}
func TestTransform() {
i, gc := initGc(800, 600)
gc.Save()
gc.Translate(40, 40) // Set origin to (40, 40)
gc.BeginPath()
gc.MoveTo(0,0)
gc.RLineTo(72,0)
gc.RLineTo(0, 72)
gc.RLineTo(-72,0)
gc.ClosePath()
gc.Stroke()
gc.Restore()
gc.Save()
gc.Translate(100, 150) // Translate origin to (100, 150)
gc.Rotate(30* (math.Pi / 180.0)) // Rotate counter-clockwise by 30 degrees
gc.BeginPath()
gc.MoveTo(0,0)
gc.RLineTo(72,0)
gc.RLineTo(0, 72)
gc.RLineTo(-72,0)
gc.ClosePath() // Draw box...
gc.Stroke()
gc.Restore()
gc.Save()
gc.Translate(40, 300) // Translate to (40, 300)
gc.Scale(0.5, 1) // Reduce x coord by 1/2, y coord left alone
gc.BeginPath()
gc.MoveTo(0,0)
gc.RLineTo(72,0)
gc.RLineTo(0, 72)
gc.RLineTo(-72,0)
gc.ClosePath() // Draw box...
gc.Stroke()
gc.Restore()
gc.Save()
gc.Translate(300, 300) // Set origin to (300, 300)
gc.Rotate(45* (math.Pi / 180.0)) // Rotate coordinates by 45 degrees
gc.Scale(0.5, 1) // Scale coordinates
gc.BeginPath()
gc.MoveTo(0,0)
gc.RLineTo(72,0)
gc.RLineTo(0, 72)
gc.RLineTo(-72,0)
gc.ClosePath() // Draw box
gc.Stroke()
gc.Restore()
saveToPngFile("TestTransform", i)
}
func TestPathTransform() {
i, gc := initGc(800, 600)
gc.SetLineWidth(20)
gc.Scale(1,4)
gc.ArcTo(200, 50, 50, 50, 0, math.Pi * 2)
gc.Stroke()
saveToPngFile("TestPathTransform", i)
}
func main() {
TestPath()
TestDrawArc()
TestDrawArcNegative()
TestCurveRectangle()
TestDrawCubicCurve()
TestDash()
TestFillStroke()
TestFillStyle()
TestMultiSegmentCaps()
TestRoundRectangle()
TestLineCap()
TestLineJoin()
TestBubble()
TestStar()
TestTransform()
TestPathTransform()
}

View File

@ -0,0 +1,136 @@
package main
import (
"fmt"
"log"
"os"
"bufio"
"time"
"math"
"image"
"image/png"
"draw2d"
//"draw2d.googlecode.com/svn/trunk/draw2d/src/pkg/draw2d"
)
const (
width, height = 500, 300
)
var (
lastTime int64
folder = "../../../../wiki/test_results/"
)
func initGc(w, h int) (image.Image, *draw2d.GraphicContext) {
i := image.NewRGBA(w, h)
gc := draw2d.NewGraphicContext(i)
lastTime = time.Nanoseconds()
gc.SetStrokeColor(image.Black)
gc.SetFillColor(image.White)
// fill the background
//gc.Clear()
return i, gc
}
func saveToPngFile(TestName string, m image.Image) {
dt := time.Nanoseconds() - lastTime
fmt.Printf("%s during: %f ms\n", TestName, float(dt)*10e-6)
filePath := folder + TestName + ".png"
f, err := os.Open(filePath, os.O_CREAT|os.O_WRONLY, 0600)
if err != nil {
log.Println(err)
os.Exit(1)
}
defer f.Close()
b := bufio.NewWriter(f)
err = png.Encode(b, m)
if err != nil {
log.Println(err)
os.Exit(1)
}
err = b.Flush()
if err != nil {
log.Println(err)
os.Exit(1)
}
fmt.Printf("Wrote %s OK.\n", filePath)
}
func gordon(gc *draw2d.GraphicContext, x, y, w, h float) {
h23 := (h * 2) / 3
blf := image.RGBAColor{0, 0, 0, 0xff}
wf := image.RGBAColor{0xff, 0xff, 0xff, 0xff}
nf := image.RGBAColor{0x8B, 0x45, 0x13, 0xff}
brf := image.RGBAColor{0x8B, 0x45, 0x13, 0x99}
brb := image.RGBAColor{0x8B, 0x45, 0x13, 0xBB}
gc.MoveTo(x, y+h)
gc.CubicCurveTo(x, y+h, x+w/2, y-h, x+w, y+h)
gc.ClosePath()
gc.SetFillColor(brb)
gc.Fill()
gc.RoundRect(x, y+h, x+ w, y+h+h, 10, 10)
gc.Fill()
gc.Circle(x, y+h, w/12) // left ear
gc.SetFillColor(brf)
gc.Fill()
gc.Circle(x, y+h, w/12-10)
gc.SetFillColor(nf)
gc.Fill()
gc.Circle(x+w, y+h, w/12) // right ear
gc.SetFillColor(brf)
gc.Fill()
gc.Circle(x+w, y+h, w/12-10)
gc.SetFillColor(nf)
gc.Fill()
gc.Circle(x+w/3, y+h23, w/9) // left eye
gc.SetFillColor(wf)
gc.Fill()
gc.Circle(x+w/3+10, y+h23, w / 10 - 10)
gc.SetFillColor(blf)
gc.Fill()
gc.Circle(x+w/3+15, y+h23, 5)
gc.SetFillColor(wf)
gc.Fill()
gc.Circle(x+w-w/3, y+h23, w/9) // right eye
gc.Fill()
gc.Circle(x+w-w/3+10, y+h23, w / 10 - 10)
gc.SetFillColor(blf)
gc.Fill()
gc.Circle(x+w-(w/3)+15, y+h23, 5)
gc.SetFillColor(wf)
gc.Fill()
gc.SetFillColor(wf)
gc.RoundRect(x+w/2-w/8, y+h+30, x+w/2-w/8 + w/8, y+h+30 + w/6, 5, 5) // left tooth
gc.Fill()
gc.RoundRect(x+w/2, y+h+30, x+w/2+w/8, y+h+30+w/6, 5, 5) // right tooth
gc.Fill()
gc.Ellipse(x+(w/2), y+h+30, w/6, w/12) // snout
gc.SetFillColor(nf)
gc.Fill()
gc.Ellipse(x+(w/2), y+h+10, w/10, w/12) // nose
gc.SetFillColor(blf)
gc.Fill()
}
func main() {
i, gc := initGc(width, height)
gc.Clear()
gc.Translate(100, 100)
gc.Rotate(-30 * (math.Pi / 180.0))
gordon(gc, 48, 48, 240, 72)
saveToPngFile("TestGopher", i)
}

View File

@ -0,0 +1,20 @@
// Copyright 2010 The draw2d Authors. All rights reserved.
// created: 21/11/2010 by Laurent Le Goff
package main
import (
"draw2d"
//"draw2d.googlecode.com/svn/trunk/draw2d/src/pkg/draw2d"
"fmt"
)
func main() {
path := new(draw2d.Path)
path.MoveTo(2.0, 3.0)
path.LineTo(2.0, 3.0)
path.QuadCurveTo(2.0, 3.0, 10, 20)
path.CubicCurveTo(2.0, 3.0, 10, 20, 13, 23)
path.ArcTo(2.0, 3.0, 100, 200, 200, 300)
fmt.Printf("%v\n", path)
}

View File

@ -0,0 +1,12 @@
include $(GOROOT)/src/Make.inc
TARG=draw2d.googlecode.com/svn/trunk/draw2d/src/pkg/draw2d
GOFILES=\
arc.go\
curves.go\
draw2d.go\
math.go\
path.go\
transform.go\
include $(GOROOT)/src/Make.pkg

View File

@ -0,0 +1,34 @@
// Copyright 2010 The draw2d Authors. All rights reserved.
// created: 21/11/2010 by Laurent Le Goff
package draw2d
func arc(t VertexConverter, x, y, rx, ry, start, angle, scale float) (lastX, lastY float){
end := start + angle
clockWise := true
if angle < 0 {
clockWise = false
}
ra := (fabs(rx) + fabs(ry)) / 2
da := acos(ra/(ra+0.125/scale)) * 2
//normalize
if !clockWise {
da = -da
}
angle = start + da
var curX, curY float
for {
if (angle < end-da/4) != clockWise {
curX = x + cos(end)*rx
curY = y + sin(end)*ry
return curX, curY
}
curX = x + cos(angle)*rx
curY = y + sin(angle)*ry
angle += da
t.Vertex(curX, curY)
}
return curX, curY
}

View File

@ -0,0 +1,339 @@
// Copyright 2010 The draw2d Authors. All rights reserved.
// created: 21/11/2010 by Laurent Le Goff
package draw2d
import (
"math"
)
var (
CurveRecursionLimit = 32
CurveCollinearityEpsilon = 1e-30
CurveAngleToleranceEpsilon = 0.01
)
/*
The function has the following parameters:
approximationScale :
Eventually determines the approximation accuracy. In practice we need to transform points from the World coordinate system to the Screen one.
It always has some scaling coefficient.
The curves are usually processed in the World coordinates, while the approximation accuracy should be eventually in pixels.
Usually it looks as follows:
curved.approximationScale(transform.scale());
where transform is the affine matrix that includes all the transformations, including viewport and zoom.
angleTolerance :
You set it in radians.
The less this value is the more accurate will be the approximation at sharp turns.
But 0 means that we don't consider angle conditions at all.
cuspLimit :
An angle in radians.
If 0, only the real cusps will have bevel cuts.
If more than 0, it will restrict the sharpness.
The more this value is the less sharp turns will be cut.
Typically it should not exceed 10-15 degrees.
*/
func cubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4, approximationScale, angleTolerance, cuspLimit float) {
cuspLimit = computeCuspLimit(cuspLimit)
distanceToleranceSquare := 0.5 / approximationScale
distanceToleranceSquare = distanceToleranceSquare * distanceToleranceSquare
recursiveCubicBezier(v, x1, y1, x2, y2, x3, y3, x4, y4, 0, distanceToleranceSquare, angleTolerance, cuspLimit)
}
/*
* see cubicBezier comments for approximationScale and angleTolerance definition
*/
func quadraticBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, approximationScale, angleTolerance float) {
distanceToleranceSquare := 0.5 / approximationScale
distanceToleranceSquare = distanceToleranceSquare * distanceToleranceSquare
recursiveQuadraticBezierBezier(v, x1, y1, x2, y2, x3, y3, 0, distanceToleranceSquare, angleTolerance)
}
func computeCuspLimit(v float) (r float) {
if v == 0.0 {
r = 0.0
} else {
r = math.Pi - v
}
return
}
/**
* http://www.antigrain.com/research/adaptive_bezier/index.html
*/
func recursiveQuadraticBezierBezier(v VertexConverter, x1, y1, x2, y2, x3, y3 float, level int, distanceToleranceSquare, angleTolerance float) {
if level > CurveRecursionLimit {
return
}
// Calculate all the mid-points of the line segments
//----------------------
x12 := (x1 + x2) / 2
y12 := (y1 + y2) / 2
x23 := (x2 + x3) / 2
y23 := (y2 + y3) / 2
x123 := (x12 + x23) / 2
y123 := (y12 + y23) / 2
dx := x3 - x1
dy := y3 - y1
d := fabs(((x2-x3)*dy - (y2-y3)*dx))
if d > CurveCollinearityEpsilon {
// Regular case
//-----------------
if d*d <= distanceToleranceSquare*(dx*dx+dy*dy) {
// If the curvature doesn't exceed the distanceTolerance value
// we tend to finish subdivisions.
//----------------------
if angleTolerance < CurveAngleToleranceEpsilon {
v.Vertex(x123, y123)
return
}
// Angle & Cusp Condition
//----------------------
da := fabs(atan2(y3-y2, x3-x2) - atan2(y2-y1, x2-x1))
if da >= math.Pi {
da = 2*math.Pi - da
}
if da < angleTolerance {
// Finally we can stop the recursion
//----------------------
v.Vertex(x123, y123)
return
}
}
} else {
// Collinear case
//------------------
da := dx*dx + dy*dy
if da == 0 {
d = squareDistance(x1, y1, x2, y2)
} else {
d = ((x2-x1)*dx + (y2-y1)*dy) / da
if d > 0 && d < 1 {
// Simple collinear case, 1---2---3
// We can leave just two endpoints
return
}
if d <= 0 {
d = squareDistance(x2, y2, x1, y1)
} else if d >= 1 {
d = squareDistance(x2, y2, x3, y3)
} else {
d = squareDistance(x2, y2, x1+d*dx, y1+d*dy)
}
}
if d < distanceToleranceSquare {
v.Vertex(x2, y2)
return
}
}
// Continue subdivision
//----------------------
recursiveQuadraticBezierBezier(v, x1, y1, x12, y12, x123, y123, level+1, distanceToleranceSquare, angleTolerance)
recursiveQuadraticBezierBezier(v, x123, y123, x23, y23, x3, y3, level+1, distanceToleranceSquare, angleTolerance)
}
/**
* http://www.antigrain.com/research/adaptive_bezier/index.html
*/
func recursiveCubicBezier(v VertexConverter, x1, y1, x2, y2, x3, y3, x4, y4 float, level int, distanceToleranceSquare, angleTolerance, cuspLimit float) {
if level > CurveRecursionLimit {
return
}
// Calculate all the mid-points of the line segments
//----------------------
x12 := (x1 + x2) / 2
y12 := (y1 + y2) / 2
x23 := (x2 + x3) / 2
y23 := (y2 + y3) / 2
x34 := (x3 + x4) / 2
y34 := (y3 + y4) / 2
x123 := (x12 + x23) / 2
y123 := (y12 + y23) / 2
x234 := (x23 + x34) / 2
y234 := (y23 + y34) / 2
x1234 := (x123 + x234) / 2
y1234 := (y123 + y234) / 2
// Try to approximate the full cubic curve by a single straight line
//------------------
dx := x4 - x1
dy := y4 - y1
d2 := fabs(((x2-x4)*dy - (y2-y4)*dx))
d3 := fabs(((x3-x4)*dy - (y3-y4)*dx))
switch {
case d2 <= CurveCollinearityEpsilon && d3 <= CurveCollinearityEpsilon:
// All collinear OR p1==p4
//----------------------
k := dx*dx + dy*dy
if k == 0 {
d2 = squareDistance(x1, y1, x2, y2)
d3 = squareDistance(x4, y4, x3, y3)
} else {
k = 1 / k
da1 := x2 - x1
da2 := y2 - y1
d2 = k * (da1*dx + da2*dy)
da1 = x3 - x1
da2 = y3 - y1
d3 = k * (da1*dx + da2*dy)
if d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1 {
// Simple collinear case, 1---2---3---4
// We can leave just two endpoints
return
}
if d2 <= 0 {
d2 = squareDistance(x2, y2, x1, y1)
} else if d2 >= 1 {
d2 = squareDistance(x2, y2, x4, y4)
} else {
d2 = squareDistance(x2, y2, x1+d2*dx, y1+d2*dy)
}
if d3 <= 0 {
d3 = squareDistance(x3, y3, x1, y1)
} else if d3 >= 1 {
d3 = squareDistance(x3, y3, x4, y4)
} else {
d3 = squareDistance(x3, y3, x1+d3*dx, y1+d3*dy)
}
}
if d2 > d3 {
if d2 < distanceToleranceSquare {
v.Vertex(x2, y2)
return
}
} else {
if d3 < distanceToleranceSquare {
v.Vertex(x3, y3)
return
}
}
break
case d2 <= CurveCollinearityEpsilon && d3 > CurveCollinearityEpsilon:
// p1,p2,p4 are collinear, p3 is significant
//----------------------
if d3*d3 <= distanceToleranceSquare*(dx*dx+dy*dy) {
if angleTolerance < CurveAngleToleranceEpsilon {
v.Vertex(x23, y23)
return
}
// Angle Condition
//----------------------
da1 := fabs(atan2(y4-y3, x4-x3) - atan2(y3-y2, x3-x2))
if da1 >= math.Pi {
da1 = 2*math.Pi - da1
}
if da1 < angleTolerance {
v.Vertex(x2, y2)
v.Vertex(x3, y3)
return
}
if cuspLimit != 0.0 {
if da1 > cuspLimit {
v.Vertex(x3, y3)
return
}
}
}
break
case d2 > CurveCollinearityEpsilon && d3 <= CurveCollinearityEpsilon:
// p1,p3,p4 are collinear, p2 is significant
//----------------------
if d2*d2 <= distanceToleranceSquare*(dx*dx+dy*dy) {
if angleTolerance < CurveAngleToleranceEpsilon {
v.Vertex(x23, y23)
return
}
// Angle Condition
//----------------------
da1 := fabs(atan2(y3-y2, x3-x2) - atan2(y2-y1, x2-x1))
if da1 >= math.Pi {
da1 = 2*math.Pi - da1
}
if da1 < angleTolerance {
v.Vertex(x2, y2)
v.Vertex(x3, y3)
return
}
if cuspLimit != 0.0 {
if da1 > cuspLimit {
v.Vertex(x2, y2)
return
}
}
}
break
case d2 > CurveCollinearityEpsilon && d3 > CurveCollinearityEpsilon:
// Regular case
//-----------------
if (d2+d3)*(d2+d3) <= distanceToleranceSquare*(dx*dx+dy*dy) {
// If the curvature doesn't exceed the distanceTolerance value
// we tend to finish subdivisions.
//----------------------
if angleTolerance < CurveAngleToleranceEpsilon {
v.Vertex(x23, y23)
return
}
// Angle & Cusp Condition
//----------------------
k := atan2(y3-y2, x3-x2)
da1 := fabs(k - atan2(y2-y1, x2-x1))
da2 := fabs(atan2(y4-y3, x4-x3) - k)
if da1 >= math.Pi {
da1 = 2*math.Pi - da1
}
if da2 >= math.Pi {
da2 = 2*math.Pi - da2
}
if da1+da2 < angleTolerance {
// Finally we can stop the recursion
//----------------------
v.Vertex(x23, y23)
return
}
if cuspLimit != 0.0 {
if da1 > cuspLimit {
v.Vertex(x2, y2)
return
}
if da2 > cuspLimit {
v.Vertex(x3, y3)
return
}
}
}
break
}
// Continue subdivision
//----------------------
recursiveCubicBezier(v, x1, y1, x12, y12, x123, y123, x1234, y1234, level+1, distanceToleranceSquare, angleTolerance, cuspLimit)
recursiveCubicBezier(v, x1234, y1234, x234, y234, x34, y34, x4, y4, level+1, distanceToleranceSquare, angleTolerance, cuspLimit)
}

View File

@ -0,0 +1,99 @@
package draw2d
type LineDasher struct {
}
func (d *LineDasher) Start() {
}
func (d *LineDasher) Stop() {
}
func (d *LineDasher) Vertex(x, y float) {
}
/*
type PathAdapter struct {
path *raster.Path
x, y, distance float
dash []float
currentDash int
dashOffset float
}
func tracePath(dash []float, dashOffset float, paths ...*Path) *raster.Path {
var adapter PathAdapter
if dash != nil && len(dash) > 0 {
adapter.dash = dash
} else {
adapter.dash = nil
}
adapter.currentDash = 0
adapter.dashOffset = dashOffset
adapter.path = new(raster.Path)
for _, path := range paths {
path.TraceLine(&adapter)
}
return adapter.path
}
func floatToPoint(x, y float) raster.Point {
return raster.Point{raster.Fix32(x * 256), raster.Fix32(y * 256)}
}
func (p *PathAdapter) MoveTo(x, y float) {
p.path.Start(floatToPoint(x, y))
p.x, p.y = x, y
p.distance = p.dashOffset
p.currentDash = 0
}
func (p *PathAdapter) LineTo(x, y float) {
if p.dash != nil {
rest := p.dash[p.currentDash] - p.distance
for rest < 0 {
p.distance = p.distance - p.dash[p.currentDash]
p.currentDash = (p.currentDash + 1) % len(p.dash)
rest = p.dash[p.currentDash] - p.distance
}
d := distance(p.x, p.y, x, y)
for d >= rest {
k := rest / d
lx := p.x + k*(x-p.x)
ly := p.y + k*(y-p.y)
if p.currentDash%2 == 0 {
// line
p.path.Add1(floatToPoint(lx, ly))
} else {
// gap
p.path.Start(floatToPoint(lx, ly))
}
d = d - rest
p.x, p.y = lx, ly
p.currentDash = (p.currentDash + 1) % len(p.dash)
rest = p.dash[p.currentDash]
}
p.distance = d
if p.currentDash%2 == 0 {
p.path.Add1(floatToPoint(x, y))
} else {
p.path.Start(floatToPoint(x, y))
}
if p.distance >= p.dash[p.currentDash] {
p.distance = p.distance - p.dash[p.currentDash]
p.currentDash = (p.currentDash + 1) % len(p.dash)
}
} else {
p.path.Add1(floatToPoint(x, y))
}
p.x, p.y = x, y
}
*/

View File

@ -0,0 +1,20 @@
package draw2d
type DemuxConverter struct {
converters []VertexConverter
}
func NewDemuxConverter(converters ...VertexConverter) (*DemuxConverter) {
return &DemuxConverter{converters}
}
func (dc*DemuxConverter) NextCommand(cmd VertexCommand) {
for _,converter := range dc.converters {
converter.NextCommand(cmd)
}
}
func (dc *DemuxConverter) Vertex(x, y float) {
for _,converter := range dc.converters {
converter.Vertex(x, y)
}
}

View File

@ -0,0 +1,320 @@
// Copyright 2010 The draw2d Authors. All rights reserved.
// created: 21/11/2010 by Laurent Le Goff
// this package contains a GraphicalContext that wraps an image and permit draw vectorial 2D forms.
package draw2d
import (
"exp/draw"
"image"
"freetype-go.googlecode.com/hg/freetype/raster"
"math"
)
type FillRule int
const (
FillRuleEvenOdd FillRule = iota
FillRuleWinding
)
type GraphicContext struct {
PaintedImage *image.RGBA
fillRasterizer *raster.Rasterizer
strokeRasterizer *raster.Rasterizer
current *contextStack
}
type contextStack struct {
tr MatrixTransform
path *Path
lineWidth float
dash []float
dashOffset float
strokeColor image.Color
fillColor image.Color
fillRule FillRule
cap Cap
join Join
previous *contextStack
}
/**
* Create a new Graphic context from an image
*/
func NewGraphicContext(pi *image.RGBA) *GraphicContext {
gc := new(GraphicContext)
gc.PaintedImage = pi
width, height := gc.PaintedImage.Bounds().Dx(), gc.PaintedImage.Bounds().Dy()
gc.fillRasterizer = raster.NewRasterizer(width, height)
gc.strokeRasterizer = raster.NewRasterizer(width, height)
gc.current = new(contextStack)
gc.current.tr = NewIdentityMatrix()
gc.current.path = new(Path)
gc.current.lineWidth = 1.0
gc.current.strokeColor = image.Black
gc.current.fillColor = image.White
gc.current.cap = RoundCap
gc.current.fillRule = FillRuleEvenOdd
gc.current.join = RoundJoin
return gc
}
func (gc *GraphicContext) SetMatrixTransform(tr MatrixTransform) {
gc.current.tr = tr
}
func (gc *GraphicContext) ComposeMatrixTransform(tr MatrixTransform) {
gc.current.tr = tr.Multiply(gc.current.tr)
}
func (gc *GraphicContext) Rotate(angle float) {
gc.current.tr = NewRotationMatrix(angle).Multiply(gc.current.tr)
}
func (gc *GraphicContext) Translate(tx, ty float) {
gc.current.tr = NewTranslationMatrix(tx, ty).Multiply(gc.current.tr)
}
func (gc *GraphicContext) Scale(sx, sy float) {
gc.current.tr = NewScaleMatrix(sx, sy).Multiply(gc.current.tr)
}
func (gc *GraphicContext) Clear() {
width, height := gc.PaintedImage.Bounds().Dx(), gc.PaintedImage.Bounds().Dy()
gc.ClearRect(0, 0, width, height)
}
func (gc *GraphicContext) ClearRect(x1, y1, x2, y2 int) {
imageColor := image.NewColorImage(gc.current.fillColor)
draw.Draw(gc.PaintedImage, image.Rect(x1, y1, x2, y2), imageColor, image.ZP)
}
func (gc *GraphicContext) SetStrokeColor(c image.Color) {
gc.current.strokeColor = c
}
func (gc *GraphicContext) SetFillColor(c image.Color) {
gc.current.fillColor = c
}
func (gc *GraphicContext) SetFillRule(f FillRule) {
gc.current.fillRule = f
}
func (gc *GraphicContext) SetLineWidth(lineWidth float) {
gc.current.lineWidth = lineWidth
}
func (gc *GraphicContext) SetLineCap(cap Cap) {
gc.current.cap = cap
}
func (gc *GraphicContext) SetLineJoin(join Join) {
gc.current.join = join
}
func (gc *GraphicContext) SetLineDash(dash []float, dashOffset float) {
gc.current.dash = dash
gc.current.dashOffset = dashOffset
}
func (gc *GraphicContext) Save() {
context := new(contextStack)
context.lineWidth = gc.current.lineWidth
context.strokeColor = gc.current.strokeColor
context.fillColor = gc.current.fillColor
context.fillRule = gc.current.fillRule
context.dash = gc.current.dash
context.dashOffset = gc.current.dashOffset
context.cap = gc.current.cap
context.join = gc.current.join
context.path = gc.current.path.Copy()
copy(context.tr[:], gc.current.tr[:])
context.previous = gc.current
gc.current = context
}
func (gc *GraphicContext) Restore() {
if gc.current.previous != nil {
oldContext := gc.current
gc.current = gc.current.previous
oldContext.previous = nil
}
}
func (gc *GraphicContext) BeginPath() {
gc.current.path = new(Path)
}
func (gc *GraphicContext) MoveTo(x, y float) {
gc.current.path.MoveTo(x, y)
}
func (gc *GraphicContext) RMoveTo(dx, dy float) {
gc.current.path.RMoveTo(dx, dy)
}
func (gc *GraphicContext) LineTo(x, y float) {
gc.current.path.LineTo(x, y)
}
func (gc *GraphicContext) RLineTo(dx, dy float) {
gc.current.path.RLineTo(dx, dy)
}
func (gc *GraphicContext) QuadCurveTo(cx, cy, x, y float) {
gc.current.path.QuadCurveTo(cx, cy, x, y)
}
func (gc *GraphicContext) RQuadCurveTo(dcx, dcy, dx, dy float) {
gc.current.path.RQuadCurveTo(dcx, dcy, dx, dy)
}
func (gc *GraphicContext) CubicCurveTo(cx1, cy1, cx2, cy2, x, y float) {
gc.current.path.CubicCurveTo(cx1, cy1, cx2, cy2, x, y)
}
func (gc *GraphicContext) RCubicCurveTo(dcx1, dcy1, dcx2, dcy2, dx, dy float) {
gc.current.path.RCubicCurveTo(dcx1, dcy1, dcx2, dcy2, dx, dy)
}
func (gc *GraphicContext) ArcTo(cx, cy, rx, ry, startAngle, angle float) {
gc.current.path.ArcTo(cx, cy, rx, ry, startAngle, angle)
}
func (gc *GraphicContext) RArcTo(dcx, dcy, rx, ry, startAngle, angle float) {
gc.current.path.RArcTo(dcx, dcy, rx, ry, startAngle, angle)
}
func (gc *GraphicContext) ClosePath() {
gc.current.path.Close()
}
//high level path creation
func (gc *GraphicContext) Rect(x1, y1, x2, y2 float) {
if gc.current.path.isEmpty() {
gc.current.path.MoveTo(x1, y1)
} else {
gc.current.path.LineTo(x1, y1)
}
gc.current.path.LineTo(x2, y1)
gc.current.path.LineTo(x2, y2)
gc.current.path.LineTo(x1, y2)
gc.current.path.Close()
}
func (gc *GraphicContext) RoundRect(x1, y1, x2, y2, arcWidth, arcHeight float) {
arcWidth = arcWidth/2;
arcHeight = arcHeight/2;
gc.MoveTo(x1, y1+ arcHeight);
gc.QuadCurveTo(x1, y1, x1 + arcWidth, y1);
gc.LineTo(x2-arcWidth, y1);
gc.QuadCurveTo(x2, y1, x2, y1 + arcHeight);
gc.LineTo(x2, y2-arcHeight);
gc.QuadCurveTo(x2, y2, x2 - arcWidth, y2);
gc.LineTo(x1 + arcWidth, y2);
gc.QuadCurveTo(x1, y2, x1, y2 - arcHeight);
gc.ClosePath()
}
func (gc *GraphicContext) Ellipse(cx, cy, rx, ry float) {
gc.current.path.ArcTo(cx, cy, rx, ry, 0, -math.Pi * 2)
gc.current.path.Close()
}
func (gc *GraphicContext) Circle(cx, cy, radius float) {
gc.current.path.ArcTo(cx, cy, radius, radius, 0, -math.Pi * 2)
gc.current.path.Close()
}
func (gc *GraphicContext) paint(rasterizer *raster.Rasterizer,color image.Color) {
painter := raster.NewRGBAPainter(gc.PaintedImage)
painter.SetColor(color)
rasterizer.Rasterize(painter)
rasterizer.Clear()
gc.current.path = new(Path)
}
func (gc *GraphicContext) Stroke(paths ...*Path) {
gc.strokeRasterizer.UseNonZeroWinding = true
stroker := NewLineStroker(NewVertexMatrixTransform(gc.current.tr, NewVertexRasterizer(gc.strokeRasterizer)))
stroker.HalfLineWidth = gc.current.lineWidth / 2
paths = append(paths, gc.current.path)
pathConverter := NewPathConverter(stroker)
pathConverter.ApproximationScale = gc.current.tr.GetMaxAbsScaling()
for _, path := range paths {
pathConverter.Convert(path)
}
gc.paint(gc.strokeRasterizer, gc.current.strokeColor)
}
func (gc *GraphicContext) Fill(paths ...*Path) {
filler := NewVertexMatrixTransform(gc.current.tr, NewVertexRasterizer(gc.fillRasterizer))
gc.fillRasterizer.UseNonZeroWinding = gc.current.fillRule.fillRule()
paths = append(paths, gc.current.path)
pathConverter := NewPathConverter(filler)
pathConverter.ApproximationScale = gc.current.tr.GetMaxAbsScaling()
for _, path := range paths {
pathConverter.Convert(path)
}
gc.paint(gc.fillRasterizer, gc.current.fillColor)
}
func (gc *GraphicContext) FillStroke(paths ...*Path) {
gc.fillRasterizer.UseNonZeroWinding = gc.current.fillRule.fillRule()
gc.strokeRasterizer.UseNonZeroWinding = true
filler := NewVertexMatrixTransform(gc.current.tr, NewVertexRasterizer(gc.fillRasterizer))
stroker := NewLineStroker(NewVertexMatrixTransform(gc.current.tr, NewVertexRasterizer(gc.strokeRasterizer)))
stroker.HalfLineWidth = gc.current.lineWidth / 2
demux := NewDemuxConverter(filler, stroker)
paths = append(paths, gc.current.path)
pathConverter := NewPathConverter(demux)
pathConverter.ApproximationScale = gc.current.tr.GetMaxAbsScaling()
for _, path := range paths {
pathConverter.Convert(path)
}
gc.paint(gc.fillRasterizer, gc.current.fillColor)
gc.paint(gc.strokeRasterizer, gc.current.strokeColor)
}
func (f FillRule) fillRule() bool {
switch f {
case FillRuleEvenOdd:
return false
case FillRuleWinding:
return true
}
return false
}
func (c Cap) capper() raster.Capper {
switch c {
case RoundCap:
return raster.RoundCapper
case ButtCap:
return raster.ButtCapper
case SquareCap:
return raster.SquareCapper
}
return raster.RoundCapper
}
func (j Join) joiner() raster.Joiner {
switch j {
case RoundJoin:
return raster.RoundJoiner
case BevelJoin:
return raster.BevelJoiner
}
return raster.RoundJoiner
}

View File

@ -0,0 +1,16 @@
package draw2d
type Join int
const (
BevelJoin Join = iota
RoundJoin
MiterJoin
)
type JoinerFunc func(x1, y1, nx1, ny1, x2, y2, nx2, ny2 float)
func emptyJoiner(x1, y1, nx1, ny1, x2, y2, nx2, ny2 float) {
}

View File

@ -0,0 +1,46 @@
// Copyright 2010 The draw2d Authors. All rights reserved.
// created: 21/11/2010 by Laurent Le Goff
package draw2d
import (
"math"
)
func fabs(x float) float {
switch {
case x < 0:
return -x
case x == 0:
return 0 // return correctly fabs(-0)
}
return x
}
func cos(f float) float {
return float(math.Cos(float64(f)))
}
func sin(f float) float {
return float(math.Sin(float64(f)))
}
func acos(f float) float {
return float(math.Acos(float64(f)))
}
func atan2(x, y float) float {
return float(math.Atan2(float64(x), float64(y)))
}
func distance(x1, y1, x2, y2 float) float {
return vectorDistance(x2 - x1, y2 - y1)
}
func vectorDistance(dx, dy float) float {
return float(math.Sqrt(float64(dx*dx + dy*dy)))
}
func squareDistance(x1, y1, x2, y2 float) float {
dx := x2 - x1
dy := y2 - y1
return dx*dx + dy*dy
}

View File

@ -0,0 +1,169 @@
// Copyright 2010 The draw2d Authors. All rights reserved.
// created: 21/11/2010 by Laurent Le Goff
package draw2d
import (
"fmt"
"math"
)
type PathCmd byte
const (
NoPathCmd PathCmd = iota
MoveTo
LineTo
QuadCurveTo
CubicCurveTo
ArcTo
Close
)
type Path struct {
commands []PathCmd
vertices []float
x, y float
}
func (p *Path) appendToPath(cmd PathCmd, vertices ...float) {
p.commands = append(p.commands, cmd)
p.vertices = append(p.vertices, vertices...)
}
func (src *Path) Copy() (dest *Path) {
dest = new(Path)
dest.commands = make([]PathCmd, len(src.commands))
copy(dest.commands, src.commands)
dest.vertices = make([]float, len(src.vertices))
copy(dest.vertices, src.vertices)
return dest
}
func (p *Path) LastPoint() (x, y float) {
return p.x, p.y
}
func (p *Path) isEmpty() bool {
return len(p.commands) == 0
}
func (p *Path) Close() *Path {
p.appendToPath(Close)
return p
}
func (p *Path) MoveTo(x, y float) *Path {
p.appendToPath(MoveTo, x, y)
p.x = x
p.y = y
return p
}
func (p *Path) RMoveTo(dx, dy float) *Path {
x, y := p.LastPoint()
p.MoveTo(x+dx, y+dy)
return p
}
func (p *Path) LineTo(x, y float) *Path {
p.appendToPath(LineTo, x, y)
p.x = x
p.y = y
return p
}
func (p *Path) RLineTo(dx, dy float) *Path {
x, y := p.LastPoint()
p.LineTo(x+dx, y+dy)
return p
}
func (p *Path) QuadCurveTo(cx, cy, x, y float) *Path {
p.appendToPath(QuadCurveTo, cx, cy, x, y)
p.x = x
p.y = y
return p
}
func (p *Path) RQuadCurveTo(dcx, dcy, dx, dy float) *Path {
x, y := p.LastPoint()
p.RQuadCurveTo(x+dcx, y+dcy, x+dx, y+dy)
return p
}
func (p *Path) CubicCurveTo(cx1, cy1, cx2, cy2, x, y float) *Path {
p.appendToPath(CubicCurveTo, cx1, cy1, cx2, cy2, x, y)
p.x = x
p.y = y
return p
}
func (p *Path) RCubicCurveTo(dcx1, dcy1, dcx2, dcy2, dx, dy float) *Path {
x, y := p.LastPoint()
p.RCubicCurveTo(x+dcx1, y+dcy1, x+dcx2, y+dcy2, x+dx, y+dy)
return p
}
func (p *Path) ArcTo(cx, cy, rx, ry, startAngle, angle float) *Path {
endAngle := startAngle + angle
clockWise := true
if angle < 0 {
clockWise = false
}
// normalize
if clockWise {
for endAngle < startAngle {
endAngle += math.Pi * 2.0
}
} else {
for startAngle < endAngle {
startAngle += math.Pi * 2.0
}
}
startX := cx + cos(startAngle)*rx
startY := cy + sin(startAngle)*ry
if len(p.commands) > 0 {
p.LineTo(startX, startY)
} else {
p.MoveTo(startX, startY)
}
p.appendToPath(ArcTo, cx, cy, rx, ry, startAngle, angle)
p.x = cx + cos(endAngle)*rx
p.y = cy + sin(endAngle)*ry
return p
}
func (p *Path) RArcTo(dcx, dcy, rx, ry, startAngle, angle float) *Path {
x, y := p.LastPoint()
p.RArcTo(x+dcx, y+dcy, rx, ry, startAngle, angle)
return p
}
func (p *Path) String() string {
s := ""
j := 0
for _, cmd := range p.commands {
switch cmd {
case MoveTo:
s += fmt.Sprintf("MoveTo: %f, %f\n", p.vertices[j], p.vertices[j+1])
j = j + 2
case LineTo:
s += fmt.Sprintf("LineTo: %f, %f\n", p.vertices[j], p.vertices[j+1])
j = j + 2
case QuadCurveTo:
s += fmt.Sprintf("QuadCurveTo: %f, %f, %f, %f\n", p.vertices[j], p.vertices[j+1], p.vertices[j+2], p.vertices[j+3])
j = j + 4
case CubicCurveTo:
s += fmt.Sprintf("CubicCurveTo: %f, %f, %f, %f, %f, %f\n", p.vertices[j], p.vertices[j+1], p.vertices[j+2], p.vertices[j+3], p.vertices[j+4], p.vertices[j+5])
j = j + 6
case ArcTo:
s += fmt.Sprintf("ArcTo: %f, %f, %f, %f, %f, %f\n", p.vertices[j], p.vertices[j+1], p.vertices[j+2], p.vertices[j+3], p.vertices[j+4], p.vertices[j+5])
j = j + 6
case Close:
s += "Close\n"
}
}
return s
}

View File

@ -0,0 +1,148 @@
package draw2d
import (
"math"
)
type PathConverter struct {
converter VertexConverter
ApproximationScale, AngleTolerance, CuspLimit float
startX, startY, x, y float
}
func NewPathConverter(converter VertexConverter) (*PathConverter) {
return &PathConverter{converter, 1, 0, 0, 0, 0, 0, 0}
}
func (c *PathConverter) Convert(path *Path) {
j := 0
for _, cmd := range path.commands {
j = j + c.ConvertCommand(cmd, path.vertices[j:]...)
}
c.converter.NextCommand(VertexStopCommand)
}
func (c *PathConverter) ConvertCommand(cmd PathCmd, vertices... float) int {
switch cmd {
case MoveTo:
c.MoveTo(vertices[0], vertices[1])
return 2
case LineTo:
c.LineTo(vertices[0], vertices[1])
return 2
case QuadCurveTo:
c.QuadCurveTo(vertices[0], vertices[1], vertices[2], vertices[3])
return 4
case CubicCurveTo:
c.CubicCurveTo(vertices[0], vertices[1], vertices[2], vertices[3], vertices[4], vertices[5])
return 6
case ArcTo:
c.x, c.y = arc(c.converter, vertices[0], vertices[1], vertices[2], vertices[3], vertices[4], vertices[5], c.ApproximationScale)
if(c.startX == c.x && c.startY== c.y) {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.Vertex(c.x, c.y)
return 6
case Close:
c.Close()
return 0
}
return 0
}
func (c *PathConverter) MoveTo(x, y float) *PathConverter {
c.x, c.y = x, y
c.startX, c.startY = c.x, c.y
c.converter.NextCommand(VertexStopCommand)
c.converter.NextCommand(VertexStartCommand)
c.converter.Vertex(c.x, c.y)
return c
}
func (c *PathConverter) RMoveTo( dx, dy float) *PathConverter {
c.MoveTo(c.x+dx, c.y+dy)
return c
}
func (c *PathConverter) LineTo( x, y float) *PathConverter {
c.x, c.y = x, y
if(c.startX == c.x && c.startY== c.y) {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.Vertex(c.x, c.y)
c.converter.NextCommand(VertexJoinCommand)
return c
}
func (c *PathConverter) RLineTo( dx, dy float) *PathConverter {
c.LineTo(c.x+dx, c.y+dy)
return c
}
func (c *PathConverter) QuadCurveTo( cx, cy, x, y float) *PathConverter {
quadraticBezier(c.converter, c.x, c.y, cx, cy, x, y, c.ApproximationScale, c.AngleTolerance)
c.x, c.y = x, y
if(c.startX == c.x && c.startY== c.y) {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.Vertex(c.x, c.y)
return c
}
func (c *PathConverter) RQuadCurveTo( dcx, dcy, dx, dy float) *PathConverter {
c.QuadCurveTo(c.x+dcx, c.y+dcy, c.x+dx, c.y+dy)
return c
}
func (c *PathConverter) CubicCurveTo( cx1, cy1, cx2, cy2, x, y float) *PathConverter {
cubicBezier(c.converter, c.x, c.y, cx1, cy1, cx2, cy2, x, y, c.ApproximationScale, c.AngleTolerance, c.CuspLimit)
c.x, c.y = x, y
if(c.startX == c.x && c.startY== c.y) {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.Vertex(c.x, c.y)
return c
}
func (c *PathConverter) RCubicCurveTo( dcx1, dcy1, dcx2, dcy2, dx, dy float) *PathConverter {
c.CubicCurveTo(c.x+dcx1, c.y+dcy1, c.x+dcx2, c.y+dcy2, c.x+dx, c.y+dy)
return c
}
func (c *PathConverter) ArcTo( cx, cy, rx, ry, startAngle, angle float) *PathConverter {
endAngle := startAngle + angle
clockWise := true
if angle < 0 {
clockWise = false
}
// normalize
if clockWise {
for endAngle < startAngle {
endAngle += math.Pi * 2.0
}
} else {
for startAngle < endAngle {
startAngle += math.Pi * 2.0
}
}
startX := cx + cos(startAngle)*rx
startY := cy + sin(startAngle)*ry
c.MoveTo(startX, startY)
c.x, c.y = arc(c.converter, cx, cy, rx, ry, startAngle, angle, c.ApproximationScale)
if(c.startX == c.x && c.startY== c.y) {
c.converter.NextCommand(VertexCloseCommand)
}
c.converter.Vertex(c.x, c.y)
return c
}
func (c *PathConverter) RArcTo( dcx, dcy, rx, ry, startAngle, angle float) *PathConverter {
c.ArcTo(c.x+dcx, c.y+dcy, rx, ry, startAngle, angle)
return c
}
func (c *PathConverter) Close() *PathConverter {
c.converter.NextCommand(VertexCloseCommand)
c.converter.Vertex(c.startX, c.startY)
return c
}

View File

@ -0,0 +1,36 @@
package draw2d
import (
"freetype-go.googlecode.com/hg/freetype/raster"
)
type VertexRasterizer struct {
rasterizer *raster.Rasterizer
command VertexCommand
}
func NewVertexRasterizer(rasterizer *raster.Rasterizer) (*VertexRasterizer) {
vr := new(VertexRasterizer)
vr.rasterizer = rasterizer
return vr
}
func (vr *VertexRasterizer) NextCommand(command VertexCommand) {
vr.command = command
}
func (vr *VertexRasterizer) Vertex(x, y float) {
switch vr.command {
case VertexStartCommand:
vr.rasterizer.Start(floatToPoint(x,y))
default:
vr.rasterizer.Add1(floatToPoint(x,y))
}
vr.command = VertexNoCommand
}
func floatToPoint(x, y float) raster.Point {
return raster.Point{raster.Fix32(x * 256), raster.Fix32(y * 256)}
}

View File

@ -0,0 +1,153 @@
package draw2d
type Cap int
const (
RoundCap Cap = iota
ButtCap
SquareCap
)
type LineStroker struct {
Next VertexConverter
HalfLineWidth float
Cap Cap
Join Join
vertices []float
rewind []float
x, y, nx, ny float
command VertexCommand
}
func NewLineStroker(converter VertexConverter) (*LineStroker){
l := new(LineStroker)
l.Next = converter
l.HalfLineWidth = 0.5
l.vertices = make([]float, 0)
l.rewind = make([]float, 0)
l.Cap = ButtCap
l.Join = MiterJoin
l.command = VertexNoCommand
return l
}
func (l *LineStroker) NextCommand(command VertexCommand) {
l.command = command
if(command == VertexStopCommand) {
l.Next.NextCommand(VertexStartCommand)
for i,j:=0,1; j < len(l.vertices); i,j=i+2,j+2 {
l.Next.Vertex(l.vertices[i], l.vertices[j])
l.Next.NextCommand(VertexNoCommand)
}
for i,j:=len(l.rewind) - 2 ,len(l.rewind) - 1; j > 0; i,j=i-2,j-2 {
l.Next.NextCommand(VertexNoCommand)
l.Next.Vertex(l.rewind[i], l.rewind[j])
}
if len(l.vertices) > 1 {
l.Next.NextCommand(VertexNoCommand)
l.Next.Vertex(l.vertices[0] , l.vertices[1])
}
l.Next.NextCommand(VertexStopCommand)
// reinit vertices
l.vertices = make([]float, 0)
l.rewind = make([]float, 0)
l.x, l.y, l.nx, l.ny = 0, 0, 0, 0
}
}
func (l *LineStroker) Vertex(x, y float) {
switch l.command {
case VertexNoCommand:
l.line(l.x, l.y, x, y)
case VertexStartCommand:
l.x, l.y = x, y
case VertexJoinCommand:
l.joinLine(l.x, l.y, l.nx, l.ny, x, y)
case VertexCloseCommand:
l.line(l.x, l.y, x, y)
l.joinLine(l.x, l.y, l.nx, l.ny, x, y)
l.closePolygon()
}
l.command = VertexNoCommand
}
func (l *LineStroker) closePolygon() {
if len(l.vertices) > 1 {
l.vertices = append(l.vertices, l.vertices[0] , l.vertices[1])
l.rewind = append(l.rewind, l.rewind[0] , l.rewind[1])
}
}
func (l *LineStroker) line(x1, y1, x2, y2 float) {
dx := (x2 - x1)
dy := (y2 - y1)
d := vectorDistance(dx, dy)
if d != 0 {
nx := dy * l.HalfLineWidth / d
ny := -(dx * l.HalfLineWidth / d)
l.vertices = append(l.vertices, x1 + nx, y1 + ny, x2 + nx , y2 + ny)
l.rewind = append(l.rewind, x1 - nx, y1 - ny, x2 - nx, y2 - ny)
l.x, l.y, l.nx, l.ny = x2 , y2 , nx, ny
}
}
func (l *LineStroker) joinLine(x1, y1, nx1, ny1, x2, y2 float) {
dx := (x2 - x1)
dy := (y2 - y1)
d := vectorDistance(dx, dy)
if(d != 0) {
nx := dy * l.HalfLineWidth / d
ny := -(dx * l.HalfLineWidth / d)
/* l.join(x1, y1, x1 + nx, y1 - ny, nx, ny, x1 + ny2, y1 + nx2, nx2, ny2)
l.join(x1, y1, x1 - ny1, y1 - nx1, nx1, ny1, x1 - ny2, y1 - nx2, nx2, ny2)*/
l.vertices = append(l.vertices, x1 + nx, y1 + ny, x2 + nx , y2 + ny)
l.rewind = append(l.rewind, x1 - nx, y1 - ny, x2 - nx, y2 - ny)
l.x, l.y, l.nx, l.ny = x2 , y2 ,nx, ny
}
}
/*
void math_stroke<VC>::calc_arc(VC& vc,
double x, double y,
double dx1, double dy1,
double dx2, double dy2)
{
double a1 = atan2(dy1 * m_width_sign, dx1 * m_width_sign);
double a2 = atan2(dy2 * m_width_sign, dx2 * m_width_sign);
double da = a1 - a2;
int i, n;
da = acos(m_width_abs / (m_width_abs + 0.125 / m_approx_scale)) * 2;
add_vertex(vc, x + dx1, y + dy1);
if(m_width_sign > 0)
{
if(a1 > a2) a2 += 2 * pi;
n = int((a2 - a1) / da);
da = (a2 - a1) / (n + 1);
a1 += da;
for(i = 0; i < n; i++)
{
add_vertex(vc, x + cos(a1) * m_width, y + sin(a1) * m_width);
a1 += da;
}
}
else
{
if(a1 < a2) a2 -= 2 * pi;
n = int((a1 - a2) / da);
da = (a1 - a2) / (n + 1);
a1 -= da;
for(i = 0; i < n; i++)
{
add_vertex(vc, x + cos(a1) * m_width, y + sin(a1) * m_width);
a1 -= da;
}
}
add_vertex(vc, x + dx2, y + dy2);
}
*/

View File

@ -0,0 +1,238 @@
// Copyright 2010 The draw2d Authors. All rights reserved.
// created: 21/11/2010 by Laurent Le Goff
package draw2d
type MatrixTransform [6]float
const (
epsilon = 1e-6
)
func (tr MatrixTransform) Determinant() float {
return tr[0]*tr[3] - tr[1]*tr[2]
}
func (tr MatrixTransform) Transform(points ...*float) {
for i, j := 0, 1; j < len(points); i, j = i+2, j+2 {
x := *points[i]
y := *points[j]
*points[i] = x*tr[0] + y*tr[2] + tr[4]
*points[j] = x*tr[1] + y*tr[3] + tr[5]
}
}
func (tr MatrixTransform) InverseTransform(points ...*float) {
d := tr.Determinant() // matrix determinant
for i, j := 0, 1; j < len(points); i, j = i+2, j+2 {
x := *points[i]
y := *points[j]
*points[i] = ((x-tr[4])*tr[3] - (y-tr[5])*tr[2]) / d
*points[j] = ((y-tr[5])*tr[0] - (x-tr[4])*tr[1]) / d
}
}
// ******************** Vector transformations ********************
func (tr MatrixTransform) VectorTransform(points ...*float) {
for i, j := 0, 1; j < len(points); i, j = i+2, j+2 {
x := *points[i]
y := *points[j]
*points[i] = x*tr[0] + y*tr[2]
*points[j] = y*tr[3] + x*tr[1]
}
}
func (tr MatrixTransform) VectorTransform2(points ...*float) {
for i, j := 0, 1; j < len(points); i, j = i+2, j+2 {
x := *points[i]
y := *points[j]
*points[i] = x*tr[0] + y*tr[2]
*points[j] = y*tr[3] + x*tr[1]
}
}
// ******************** Transformations creation ********************
/** Creates an identity transformation. */
func NewIdentityMatrix() MatrixTransform {
return [6]float{1, 0, 0, 1, 0, 0}
}
/**
* Creates a transformation with a translation, that,
* transform point1 into point2.
*/
func NewTranslationMatrix(tx, ty float) MatrixTransform {
return [6]float{1, 0, 0, 1, tx, ty}
}
/**
* Creates a transformation with a sx, sy scale factor
*/
func NewScaleMatrix(sx, sy float) MatrixTransform {
return [6]float{sx, 0, 0, sy, 0, 0}
}
/**
* Creates a rotation transformation.
*/
func NewRotationMatrix(angle float) MatrixTransform {
c := cos(angle)
s := sin(angle)
return [6]float{c, s, -s, c, 0, 0}
}
/**
* Creates a transformation, combining a scale and a translation, that transform rectangle1 into rectangle2.
*/
func NewMatrixTransform(rectangle1, rectangle2 [4]float) MatrixTransform {
xScale := (rectangle2[2] - rectangle2[0]) / (rectangle1[2] - rectangle1[0])
yScale := (rectangle2[3] - rectangle2[1]) / (rectangle1[3] - rectangle1[1])
xOffset := rectangle2[0] - (rectangle1[0] * xScale)
yOffset := rectangle2[1] - (rectangle1[1] * yScale)
return [6]float{xScale, 0, 0, yScale, xOffset, yOffset}
}
// ******************** Transformations operations ********************
/**
* Returns a transformation that is the inverse of the given transformation.
*/
func (tr MatrixTransform) GetInverseTransformation() MatrixTransform {
d := tr.Determinant() // matrix determinant
return [6]float{
tr[3] / d,
-tr[1] / d,
-tr[2] / d,
tr[0] / d,
(tr[2]*tr[5] - tr[3]*tr[4]) / d,
(tr[1]*tr[4] - tr[0]*tr[5]) / d}
}
func (tr1 MatrixTransform) Multiply(tr2 MatrixTransform) MatrixTransform {
return [6]float{
tr1[0]*tr2[0] + tr1[1]*tr2[2],
tr1[1]*tr2[3] + tr1[0]*tr2[1],
tr1[2]*tr2[0] + tr1[3]*tr2[2],
tr1[3]*tr2[3] + tr1[2]*tr2[1],
tr1[4]*tr2[0] + tr1[5]*tr2[2] + tr2[4],
tr1[5]*tr2[3] + tr1[4]*tr2[1] + tr2[5]}
}
func (tr *MatrixTransform) Scale(sx, sy float) (*MatrixTransform){
tr[0] = tr[0]*sx;
tr[1] = tr[1]*sx;
tr[4] = tr[4]*sx;
tr[2] = tr[2]*sy;
tr[3] = tr[3]*sy;
tr[5] = tr[5]*sy;
return tr;
}
func (tr *MatrixTransform) Translate(tx, ty float) (*MatrixTransform){
tr[4] = tr[4] + tx
tr[5] = tr[5] + ty
return tr;
}
func (tr *MatrixTransform) Rotate(angle float) (*MatrixTransform){
ca := cos(angle);
sa := sin(angle);
t0 := tr[0] * ca - tr[1] * sa;
t2 := tr[1] * ca - tr[3] * sa;
t4 := tr[4] * ca - tr[5] * sa;
tr[1] = tr[0] * sa + tr[1] * ca;
tr[3] = tr[2] * sa + tr[3] * ca;
tr[5] = tr[4] * sa + tr[5] * ca;
tr[0] = t0;
tr[2] = t2;
tr[4] = t4;
return tr;
}
func (tr MatrixTransform) GetTranslation() (x, y float) {
return tr[4], tr[5]
}
func (tr MatrixTransform) GetScaling() (x, y float) {
return tr[0], tr[3]
}
func (tr MatrixTransform) GetMaxAbsScaling() (s float) {
sx := fabs(tr[0])
sy := fabs(tr[3])
if(sx > sy) {
return sx
}
return sy
}
func (tr MatrixTransform) GetMinAbsScaling() (s float) {
sx := fabs(tr[0])
sy := fabs(tr[3])
if(sx > sy) {
return sy
}
return sx
}
// ******************** Testing ********************
/**
* Tests if a two transformation are equal. A tolerance is applied when
* comparing matrix elements.
*/
func (tr1 MatrixTransform) Equals(tr2 MatrixTransform) bool {
for i := 0; i < 6; i = i + 1 {
if !fequals(tr1[i], tr2[i]) {
return false
}
}
return true
}
/**
* Tests if a transformation is the identity transformation. A tolerance
* is applied when comparing matrix elements.
*/
func (tr MatrixTransform) IsIdentity() bool {
return fequals(tr[4], 0) && fequals(tr[5], 0) && tr.IsTranslation()
}
/**
* Tests if a transformation is is a pure translation. A tolerance
* is applied when comparing matrix elements.
*/
func (tr MatrixTransform) IsTranslation() bool {
return fequals(tr[0], 1) && fequals(tr[1], 0) && fequals(tr[2], 0) && fequals(tr[3], 1)
}
/**
* Compares two floats.
* return true if the distance between the two floats is less than epsilon, false otherwise
*/
func fequals(float1, float2 float) bool {
return fabs(float1-float2) <= epsilon
}
type VertexMatrixTransform struct {
tr MatrixTransform
Next VertexConverter
}
func NewVertexMatrixTransform(tr MatrixTransform, converter VertexConverter) (*VertexMatrixTransform){
return &VertexMatrixTransform{tr, converter}
}
// Vertex Matrix Transform
func (vmt *VertexMatrixTransform) NextCommand(command VertexCommand) {
vmt.Next.NextCommand(command)
}
func (vmt *VertexMatrixTransform) Vertex(x, y float) {
vmt.tr.Transform(&x, &y)
vmt.Next.Vertex(x, y)
}

View File

@ -0,0 +1,20 @@
package draw2d
type VertexCommand byte
const (
VertexNoCommand VertexCommand = iota
VertexStartCommand
VertexJoinCommand
VertexCloseCommand
VertexStopCommand
)
type VertexConverter interface {
NextCommand(cmd VertexCommand)
Vertex(x, y float)
}