resolve bug on samples array initialization

This commit is contained in:
Laurent Le Goff 2011-06-01 09:38:45 +02:00
parent b0b792a0e8
commit f4c73f5f01
7 changed files with 1522 additions and 794 deletions

View file

@ -3,79 +3,132 @@
package raster package raster
var SUBPIXEL_OFFSETS_SAMPLE_8 = [8]float64{ var SUBPIXEL_OFFSETS_SAMPLE_8 = [8]float64{
5 / 8, 5.0 / 8,
0 / 8, 0.0 / 8,
3 / 8, 3.0 / 8,
6 / 8, 6.0 / 8,
1 / 8, 1.0 / 8,
4 / 8, 4.0 / 8,
7 / 8, 7.0 / 8,
2 / 8, 2.0 / 8,
} }
var SUBPIXEL_OFFSETS_SAMPLE_8_FIXED = [8]Fix{ var SUBPIXEL_OFFSETS_SAMPLE_8_FIXED = [8]Fix{
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[0]*FIXED_FLOAT_COEF), Fix(SUBPIXEL_OFFSETS_SAMPLE_8[0] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[1]*FIXED_FLOAT_COEF), Fix(SUBPIXEL_OFFSETS_SAMPLE_8[1] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[2]*FIXED_FLOAT_COEF), Fix(SUBPIXEL_OFFSETS_SAMPLE_8[2] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[3]*FIXED_FLOAT_COEF), Fix(SUBPIXEL_OFFSETS_SAMPLE_8[3] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[4]*FIXED_FLOAT_COEF), Fix(SUBPIXEL_OFFSETS_SAMPLE_8[4] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[5]*FIXED_FLOAT_COEF), Fix(SUBPIXEL_OFFSETS_SAMPLE_8[5] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[6]*FIXED_FLOAT_COEF), Fix(SUBPIXEL_OFFSETS_SAMPLE_8[6] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_8[7]*FIXED_FLOAT_COEF), Fix(SUBPIXEL_OFFSETS_SAMPLE_8[7] * FIXED_FLOAT_COEF),
} }
var SUBPIXEL_OFFSETS_SAMPLE_16 = [16]float64{ var SUBPIXEL_OFFSETS_SAMPLE_16 = [16]float64{
(1 / 16), 1.0 / 16,
(8 / 16), 8.0 / 16,
(4 / 16), 4.0 / 16,
(15 / 16), 15.0 / 16,
(11 / 16), 11.0 / 16,
(2 / 16), 2.0 / 16,
(6 / 16), 6.0 / 16,
(14 / 16), 14.0 / 16,
(10 / 16), 10.0 / 16,
(3 / 16), 3.0 / 16,
(7 / 16), 7.0 / 16,
(12 / 16), 12.0 / 16,
(0 / 16), 0.0 / 16,
(9 / 16), 9.0 / 16,
(5 / 16), 5.0 / 16,
(13 / 16), 13.0 / 16,
}
var SUBPIXEL_OFFSETS_SAMPLE_16_FIXED = [16]Fix{
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[0] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[1] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[2] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[3] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[4] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[5] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[6] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[7] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[8] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[9] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[10] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[11] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[12] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[13] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[14] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_16[15] * FIXED_FLOAT_COEF),
} }
var SUBPIXEL_OFFSETS_SAMPLE_32 = [32]float64{ var SUBPIXEL_OFFSETS_SAMPLE_32 = [32]float64{
28 / 32, 28.0 / 32,
13 / 32, 13.0 / 32,
6 / 32, 6.0 / 32,
23 / 32, 23.0 / 32,
0 / 32, 0.0 / 32,
17 / 32, 17.0 / 32,
10 / 32, 10.0 / 32,
27 / 32, 27.0 / 32,
4 / 32, 4.0 / 32,
21 / 32, 21.0 / 32,
14 / 32, 14.0 / 32,
31 / 32, 31.0 / 32,
8 / 32, 8.0 / 32,
25 / 32, 25.0 / 32,
18 / 32, 18.0 / 32,
3 / 32, 3.0 / 32,
12 / 32, 12.0 / 32,
29 / 32, 29.0 / 32,
22 / 32, 22.0 / 32,
7 / 32, 7.0 / 32,
16 / 32, 16.0 / 32,
1 / 32, 1.0 / 32,
26 / 32, 26.0 / 32,
11 / 32, 11.0 / 32,
20 / 32, 20.0 / 32,
5 / 32, 5.0 / 32,
30 / 32, 30.0 / 32,
15 / 32, 15.0 / 32,
24 / 32, 24.0 / 32,
9 / 32, 9.0 / 32,
2 / 32, 2.0 / 32,
19 / 32, 19.0 / 32,
}
var SUBPIXEL_OFFSETS_SAMPLE_32_FIXED = [32]Fix{
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[0] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[1] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[2] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[3] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[4] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[5] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[6] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[7] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[8] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[9] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[10] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[11] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[12] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[13] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[14] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[15] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[16] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[17] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[18] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[19] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[20] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[21] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[22] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[23] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[24] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[25] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[26] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[27] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[28] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[29] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[30] * FIXED_FLOAT_COEF),
Fix(SUBPIXEL_OFFSETS_SAMPLE_32[31] * FIXED_FLOAT_COEF),
} }
var coverageTable = [256]uint8{ var coverageTable = [256]uint8{
@ -146,5 +199,5 @@ var coverageTable = [256]uint8{
} }
func pixelCoverage(a uint8) uint8 { func pixelCoverage(a uint8) uint8 {
return (((a) & 1) + (((a) >> 1) & 1) + (((a) >> 2) & 1) + (((a) >> 3) & 1) + (((a) >> 4) & 1) + (((a) >> 5) & 1) + (((a) >> 6) & 1) + (((a) >> 7) & 1)) return a&1 + a>>1&1 + a>>2&1 + a>>3&1 + a>>4&1 + a>>5&1 + a>>6&1 + a>>7&1
} }

View file

@ -1,320 +1,320 @@
// Copyright 2011 The draw2d Authors. All rights reserved. // Copyright 2011 The draw2d Authors. All rights reserved.
// created: 27/05/2011 by Laurent Le Goff // created: 27/05/2011 by Laurent Le Goff
package raster package raster
import ( import (
"image" "image"
"unsafe" "unsafe"
) )
const ( const (
SUBPIXEL_SHIFT = 3 SUBPIXEL_SHIFT = 3
SUBPIXEL_COUNT = 1 << SUBPIXEL_SHIFT SUBPIXEL_COUNT = 1 << SUBPIXEL_SHIFT
) )
var SUBPIXEL_OFFSETS = SUBPIXEL_OFFSETS_SAMPLE_8_FIXED var SUBPIXEL_OFFSETS = SUBPIXEL_OFFSETS_SAMPLE_8_FIXED
type SUBPIXEL_DATA uint8 type SUBPIXEL_DATA uint8
type NON_ZERO_MASK_DATA_UNIT uint8 type NON_ZERO_MASK_DATA_UNIT uint8
type Rasterizer8BitsSample struct { type Rasterizer8BitsSample struct {
MaskBuffer []SUBPIXEL_DATA MaskBuffer []SUBPIXEL_DATA
WindingBuffer []NON_ZERO_MASK_DATA_UNIT WindingBuffer []NON_ZERO_MASK_DATA_UNIT
Width int Width int
BufferWidth int BufferWidth int
Height int Height int
ClipBound [4]float64 ClipBound [4]float64
RemappingMatrix [6]float64 RemappingMatrix [6]float64
} }
/* width and height define the maximum output size for the filler. /* width and height define the maximum output size for the filler.
* The filler will output to larger bitmaps as well, but the output will * The filler will output to larger bitmaps as well, but the output will
* be cropped. * be cropped.
*/ */
func NewRasterizer8BitsSample(width, height int) *Rasterizer8BitsSample { func NewRasterizer8BitsSample(width, height int) *Rasterizer8BitsSample {
var r Rasterizer8BitsSample var r Rasterizer8BitsSample
// Scale the coordinates by SUBPIXEL_COUNT in vertical direction // Scale the coordinates by SUBPIXEL_COUNT in vertical direction
// The sampling point for the sub-pixel is at the top right corner. This // The sampling point for the sub-pixel is at the top right corner. This
// adjustment moves it to the pixel center. // adjustment moves it to the pixel center.
r.RemappingMatrix = [6]float64{1, 0, 0, SUBPIXEL_COUNT, 0.5 / SUBPIXEL_COUNT, -0.5 * SUBPIXEL_COUNT} r.RemappingMatrix = [6]float64{1, 0, 0, SUBPIXEL_COUNT, 0.5 / SUBPIXEL_COUNT, -0.5 * SUBPIXEL_COUNT}
r.Width = width r.Width = width
r.Height = height r.Height = height
// The buffer used for filling needs to be one pixel wider than the bitmap. // The buffer used for filling needs to be one pixel wider than the bitmap.
// This is because the end flag that turns the fill of is the first pixel // This is because the end flag that turns the fill of is the first pixel
// after the actually drawn edge. // after the actually drawn edge.
r.BufferWidth = width + 1 r.BufferWidth = width + 1
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*height) r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*height*SUBPIXEL_COUNT) r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*height*SUBPIXEL_COUNT)
r.ClipBound = clip(0, 0, width, height, SUBPIXEL_COUNT) r.ClipBound = clip(0, 0, width, height, SUBPIXEL_COUNT)
return &r return &r
} }
func clip(x, y, width, height, scale int) [4]float64 { func clip(x, y, width, height, scale int) [4]float64 {
var clipBound [4]float64 var clipBound [4]float64
offset := 0.99 / float64(scale) offset := 0.99 / float64(scale)
clipBound[0] = float64(x) + offset clipBound[0] = float64(x) + offset
clipBound[2] = float64(x+width) - offset clipBound[2] = float64(x+width) - offset
clipBound[1] = float64(y * scale) clipBound[1] = float64(y * scale)
clipBound[3] = float64((y + height) * scale) clipBound[3] = float64((y + height) * scale)
return clipBound return clipBound
} }
func intersect(r1, r2 [4]float64) [4]float64 { func intersect(r1, r2 [4]float64) [4]float64 {
if r1[0] < r2[0] { if r1[0] < r2[0] {
r1[0] = r2[0] r1[0] = r2[0]
} }
if r1[2] > r2[2] { if r1[2] > r2[2] {
r1[2] = r2[2] r1[2] = r2[2]
} }
if r1[0] > r1[2] { if r1[0] > r1[2] {
r1[0] = r1[2] r1[0] = r1[2]
} }
if r1[1] < r2[1] { if r1[1] < r2[1] {
r1[1] = r2[1] r1[1] = r2[1]
} }
if r1[3] > r2[3] { if r1[3] > r2[3] {
r1[3] = r2[3] r1[3] = r2[3]
} }
if r1[1] > r1[3] { if r1[1] > r1[3] {
r1[1] = r1[3] r1[1] = r1[3]
} }
return r1 return r1
} }
func (r *Rasterizer8BitsSample) RenderEvenOdd(img *image.RGBA, color *image.RGBAColor, polygon *Polygon, tr [6]float64) { func (r *Rasterizer8BitsSample) RenderEvenOdd(img *image.RGBA, color *image.RGBAColor, polygon *Polygon, tr [6]float64) {
// memset 0 the mask buffer // memset 0 the mask buffer
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height) r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
// inline matrix multiplication // inline matrix multiplication
transform := [6]float64{ transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2], tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1], tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2], tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1], tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4], tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5], tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
} }
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT) clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound) clipRect = intersect(clipRect, r.ClipBound)
p := 0 p := 0
l := len(*polygon) / 2 l := len(*polygon) / 2
var edges [32]PolygonEdge var edges [32]PolygonEdge
for p < l { for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect) edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ { for k := 0; k < edgeCount; k++ {
r.addEvenOddEdge(&(edges[k])) r.addEvenOddEdge(&edges[k])
} }
p += 16 p += 16
} }
r.fillEvenOdd(img, color, clipRect) r.fillEvenOdd(img, color, clipRect)
} }
//! Adds an edge to be used with even-odd fill. //! Adds an edge to be used with even-odd fill.
func (r *Rasterizer8BitsSample) addEvenOddEdge(edge *PolygonEdge) { func (r *Rasterizer8BitsSample) addEvenOddEdge(edge *PolygonEdge) {
x := Fix(edge.X * FIXED_FLOAT_COEF) x := Fix(edge.X * FIXED_FLOAT_COEF)
slope := Fix(edge.Slope * FIXED_FLOAT_COEF) slope := Fix(edge.Slope * FIXED_FLOAT_COEF)
slopeFix := Fix(0) slopeFix := Fix(0)
if (edge.LastLine - edge.FirstLine >= SLOPE_FIX_STEP) { if edge.LastLine-edge.FirstLine >= SLOPE_FIX_STEP {
slopeFix = Fix(edge.Slope * SLOPE_FIX_STEP * FIXED_FLOAT_COEF) - (slope << SLOPE_FIX_SHIFT); slopeFix = Fix(edge.Slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) - slope<<SLOPE_FIX_SHIFT
} }
var mask SUBPIXEL_DATA var mask SUBPIXEL_DATA
var ySub uint32 var ySub uint32
var xp, yLine int var xp, yLine int
for y := edge.FirstLine; y <= edge.LastLine; y++ { for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = uint32(y & (SUBPIXEL_COUNT - 1)) ySub = uint32(y & (SUBPIXEL_COUNT - 1))
xp = int((x + SUBPIXEL_OFFSETS[ySub]) >> FIXED_SHIFT) xp = int((x + SUBPIXEL_OFFSETS[ySub]) >> FIXED_SHIFT)
mask = SUBPIXEL_DATA(1 << ySub) mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] ^= mask r.MaskBuffer[yLine*r.BufferWidth+xp] ^= mask
x += slope x += slope
if (y & SLOPE_FIX_MASK) == 0 { if y&SLOPE_FIX_MASK == 0 {
x += slopeFix; x += slopeFix
} }
} }
} }
//! Adds an edge to be used with non-zero winding fill. //! Adds an edge to be used with non-zero winding fill.
func (r *Rasterizer8BitsSample) addNonZeroEdge(edge *PolygonEdge) { func (r *Rasterizer8BitsSample) addNonZeroEdge(edge *PolygonEdge) {
x := Fix(edge.X * FIXED_FLOAT_COEF) x := Fix(edge.X * FIXED_FLOAT_COEF)
slope := Fix(edge.Slope * FIXED_FLOAT_COEF) slope := Fix(edge.Slope * FIXED_FLOAT_COEF)
slopeFix := Fix(0) slopeFix := Fix(0)
if (edge.LastLine - edge.FirstLine >= SLOPE_FIX_STEP) { if edge.LastLine-edge.FirstLine >= SLOPE_FIX_STEP {
slopeFix = Fix(edge.Slope * SLOPE_FIX_STEP * FIXED_FLOAT_COEF) - (slope << SLOPE_FIX_SHIFT); slopeFix = Fix(edge.Slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) - slope<<SLOPE_FIX_SHIFT
} }
var mask SUBPIXEL_DATA var mask SUBPIXEL_DATA
var ySub uint32 var ySub uint32
var xp, yLine int var xp, yLine int
winding := NON_ZERO_MASK_DATA_UNIT(edge.Winding) winding := NON_ZERO_MASK_DATA_UNIT(edge.Winding)
for y := edge.FirstLine; y <= edge.LastLine; y++ { for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = uint32(y & (SUBPIXEL_COUNT - 1)) ySub = uint32(y & (SUBPIXEL_COUNT - 1))
xp = int((x + SUBPIXEL_OFFSETS[ySub]) >> FIXED_SHIFT) xp = int((x + SUBPIXEL_OFFSETS[ySub]) >> FIXED_SHIFT)
mask = SUBPIXEL_DATA(1 << ySub) mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] |= mask r.MaskBuffer[yLine*r.BufferWidth+xp] |= mask
r.WindingBuffer[(yLine*r.BufferWidth+xp)*SUBPIXEL_COUNT+int(ySub)] += winding r.WindingBuffer[(yLine*r.BufferWidth+xp)*SUBPIXEL_COUNT+int(ySub)] += winding
x += slope x += slope
if (y & SLOPE_FIX_MASK) == 0 { if y&SLOPE_FIX_MASK == 0 {
x += slopeFix; x += slopeFix
} }
} }
} }
// Renders the mask to the canvas with even-odd fill. // Renders the mask to the canvas with even-odd fill.
func (r *Rasterizer8BitsSample) fillEvenOdd(img *image.RGBA, color *image.RGBAColor, clipBound [4]float64) { func (r *Rasterizer8BitsSample) fillEvenOdd(img *image.RGBA, color *image.RGBAColor, clipBound [4]float64) {
var x, y uint32 var x, y uint32
minX := uint32(clipBound[0]) minX := uint32(clipBound[0])
maxX := uint32(clipBound[2]) maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A) //pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color)) pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff cs1 := *pixColor & 0xff00ff
cs2 := (*pixColor >> 8) & 0xff00ff cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride) stride := uint32(img.Stride)
var mask SUBPIXEL_DATA var mask SUBPIXEL_DATA
for y = minY; y < maxY; y++ { for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:] tp := img.Pix[y*stride:]
mask = 0 mask = 0
for x = minX; x <= maxX; x++ { for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x])) p := (*uint32)(unsafe.Pointer(&tp[x]))
mask ^= r.MaskBuffer[y*uint32(r.BufferWidth)+x] mask ^= r.MaskBuffer[y*uint32(r.BufferWidth)+x]
// 8bits // 8bits
alpha := uint32(coverageTable[mask]) alpha := uint32(coverageTable[mask])
// 16bits // 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff]) //alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits // 32bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff]) //alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT // alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := uint32(SUBPIXEL_COUNT) - alpha invAlpha := SUBPIXEL_COUNT - alpha
ct1 := (*p & 0xff00ff) * invAlpha ct1 := *p & 0xff00ff * invAlpha
ct2 := ((*p >> 8) & 0xff00ff) * invAlpha ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = ((ct1 + cs1*alpha) >> SUBPIXEL_SHIFT) & 0xff00ff ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = ((ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT)) & 0xff00ff00 ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2 *p = ct1 + ct2
} }
} }
} }
/* /*
* Renders the polygon with non-zero winding fill. * Renders the polygon with non-zero winding fill.
* param aTarget the target bitmap. * param aTarget the target bitmap.
* param aPolygon the polygon to render. * param aPolygon the polygon to render.
* param aColor the color to be used for rendering. * param aColor the color to be used for rendering.
* param aTransformation the transformation matrix. * param aTransformation the transformation matrix.
*/ */
func (r *Rasterizer8BitsSample) RenderNonZeroWinding(img *image.RGBA, color *image.RGBAColor, polygon *Polygon, tr [6]float64) { func (r *Rasterizer8BitsSample) RenderNonZeroWinding(img *image.RGBA, color *image.RGBAColor, polygon *Polygon, tr [6]float64) {
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height) r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*r.Height*SUBPIXEL_COUNT) r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*r.Height*SUBPIXEL_COUNT)
// inline matrix multiplication // inline matrix multiplication
transform := [6]float64{ transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2], tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1], tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2], tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1], tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4], tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5], tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
} }
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT) clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound) clipRect = intersect(clipRect, r.ClipBound)
p := 0 p := 0
l := len(*polygon) / 2 l := len(*polygon) / 2
var edges [32]PolygonEdge var edges [32]PolygonEdge
for p < l { for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect) edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ { for k := 0; k < edgeCount; k++ {
r.addNonZeroEdge(&(edges[k])) r.addNonZeroEdge(&edges[k])
} }
p += 16 p += 16
} }
r.fillNonZero(img, color, clipRect) r.fillNonZero(img, color, clipRect)
} }
//! Renders the mask to the canvas with non-zero winding fill. //! Renders the mask to the canvas with non-zero winding fill.
func (r *Rasterizer8BitsSample) fillNonZero(img *image.RGBA, color *image.RGBAColor, clipBound [4]float64) { func (r *Rasterizer8BitsSample) fillNonZero(img *image.RGBA, color *image.RGBAColor, clipBound [4]float64) {
var x, y uint32 var x, y uint32
minX := uint32(clipBound[0]) minX := uint32(clipBound[0])
maxX := uint32(clipBound[2]) maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A) //pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color)) pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff cs1 := *pixColor & 0xff00ff
cs2 := (*pixColor >> 8) & 0xff00ff cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride) stride := uint32(img.Stride)
var mask SUBPIXEL_DATA var mask SUBPIXEL_DATA
var n uint32 var n uint32
var values [SUBPIXEL_COUNT]NON_ZERO_MASK_DATA_UNIT var values [SUBPIXEL_COUNT]NON_ZERO_MASK_DATA_UNIT
for n = 0; n < SUBPIXEL_COUNT; n++ { for n = 0; n < SUBPIXEL_COUNT; n++ {
values[n] = 0 values[n] = 0
} }
for y = minY; y < maxY; y++ { for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:] tp := img.Pix[y*stride:]
mask = 0 mask = 0
for x = minX; x <= maxX; x++ { for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x])) p := (*uint32)(unsafe.Pointer(&tp[x]))
temp := r.MaskBuffer[y*uint32(r.BufferWidth)+x] temp := r.MaskBuffer[y*uint32(r.BufferWidth)+x]
if temp != 0 { if temp != 0 {
var bit SUBPIXEL_DATA = 1 var bit SUBPIXEL_DATA = 1
for n = 0; n < SUBPIXEL_COUNT; n++ { for n = 0; n < SUBPIXEL_COUNT; n++ {
if (temp & bit) != 0 { if temp&bit != 0 {
t := values[n] t := values[n]
values[n] += r.WindingBuffer[(y*uint32(r.BufferWidth)+x)*SUBPIXEL_COUNT+n] values[n] += r.WindingBuffer[(y*uint32(r.BufferWidth)+x)*SUBPIXEL_COUNT+n]
if (t == 0 || values[n] == 0 )&& t != values[n] { if (t == 0 || values[n] == 0) && t != values[n] {
mask ^= bit mask ^= bit
} }
} }
bit <<= 1 bit <<= 1
} }
} }
// 8bits // 8bits
alpha := uint32(coverageTable[mask]) alpha := uint32(coverageTable[mask])
// 16bits // 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff]) //alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits // 32bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff]) //alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT // alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := uint32(SUBPIXEL_COUNT) - alpha invAlpha := uint32(SUBPIXEL_COUNT) - alpha
ct1 := (*p & 0xff00ff) * invAlpha ct1 := *p & 0xff00ff * invAlpha
ct2 := ((*p >> 8) & 0xff00ff) * invAlpha ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = ((ct1 + cs1*alpha) >> SUBPIXEL_SHIFT) & 0xff00ff ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = ((ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT)) & 0xff00ff00 ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2 *p = ct1 + ct2
} }
} }
} }

View file

@ -1,302 +1,302 @@
// Copyright 2011 The draw2d Authors. All rights reserved. // Copyright 2011 The draw2d Authors. All rights reserved.
// created: 27/05/2011 by Laurent Le Goff // created: 27/05/2011 by Laurent Le Goff
package raster package raster
import ( import (
"image" "image"
"unsafe" "unsafe"
) )
const ( const (
SUBPIXEL_SHIFT = 3 SUBPIXEL_SHIFT = 3
SUBPIXEL_COUNT = 1 << SUBPIXEL_SHIFT SUBPIXEL_COUNT = 1 << SUBPIXEL_SHIFT
) )
var SUBPIXEL_OFFSETS = SUBPIXEL_OFFSETS_SAMPLE_8 var SUBPIXEL_OFFSETS = SUBPIXEL_OFFSETS_SAMPLE_8
type SUBPIXEL_DATA uint16 type SUBPIXEL_DATA uint16
type NON_ZERO_MASK_DATA_UNIT uint8 type NON_ZERO_MASK_DATA_UNIT uint8
type Rasterizer8BitsSample struct { type Rasterizer8BitsSample struct {
MaskBuffer []SUBPIXEL_DATA MaskBuffer []SUBPIXEL_DATA
WindingBuffer []NON_ZERO_MASK_DATA_UNIT WindingBuffer []NON_ZERO_MASK_DATA_UNIT
Width int Width int
BufferWidth int BufferWidth int
Height int Height int
ClipBound [4]float64 ClipBound [4]float64
RemappingMatrix [6]float64 RemappingMatrix [6]float64
} }
/* width and height define the maximum output size for the filler. /* width and height define the maximum output size for the filler.
* The filler will output to larger bitmaps as well, but the output will * The filler will output to larger bitmaps as well, but the output will
* be cropped. * be cropped.
*/ */
func NewRasterizer8BitsSample(width, height int) *Rasterizer8BitsSample { func NewRasterizer8BitsSample(width, height int) *Rasterizer8BitsSample {
var r Rasterizer8BitsSample var r Rasterizer8BitsSample
// Scale the coordinates by SUBPIXEL_COUNT in vertical direction // Scale the coordinates by SUBPIXEL_COUNT in vertical direction
// The sampling point for the sub-pixel is at the top right corner. This // The sampling point for the sub-pixel is at the top right corner. This
// adjustment moves it to the pixel center. // adjustment moves it to the pixel center.
r.RemappingMatrix = [6]float64{1, 0, 0, SUBPIXEL_COUNT, 0.5 / SUBPIXEL_COUNT, -0.5 * SUBPIXEL_COUNT} r.RemappingMatrix = [6]float64{1, 0, 0, SUBPIXEL_COUNT, 0.5 / SUBPIXEL_COUNT, -0.5 * SUBPIXEL_COUNT}
r.Width = width r.Width = width
r.Height = height r.Height = height
// The buffer used for filling needs to be one pixel wider than the bitmap. // The buffer used for filling needs to be one pixel wider than the bitmap.
// This is because the end flag that turns the fill of is the first pixel // This is because the end flag that turns the fill of is the first pixel
// after the actually drawn edge. // after the actually drawn edge.
r.BufferWidth = width + 1 r.BufferWidth = width + 1
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*height) r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*height*SUBPIXEL_COUNT) r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*height*SUBPIXEL_COUNT)
r.ClipBound = clip(0, 0, width, height, SUBPIXEL_COUNT) r.ClipBound = clip(0, 0, width, height, SUBPIXEL_COUNT)
return &r return &r
} }
func clip(x, y, width, height, scale int) [4]float64 { func clip(x, y, width, height, scale int) [4]float64 {
var clipBound [4]float64 var clipBound [4]float64
offset := 0.99 / float64(scale) offset := 0.99 / float64(scale)
clipBound[0] = float64(x) + offset clipBound[0] = float64(x) + offset
clipBound[2] = float64(x+width) - offset clipBound[2] = float64(x+width) - offset
clipBound[1] = float64(y * scale) clipBound[1] = float64(y * scale)
clipBound[3] = float64((y + height) * scale) clipBound[3] = float64((y + height) * scale)
return clipBound return clipBound
} }
func intersect(r1, r2 [4]float64) [4]float64 { func intersect(r1, r2 [4]float64) [4]float64 {
if r1[0] < r2[0] { if r1[0] < r2[0] {
r1[0] = r2[0] r1[0] = r2[0]
} }
if r1[2] > r2[2] { if r1[2] > r2[2] {
r1[2] = r2[2] r1[2] = r2[2]
} }
if r1[0] > r1[2] { if r1[0] > r1[2] {
r1[0] = r1[2] r1[0] = r1[2]
} }
if r1[1] < r2[1] { if r1[1] < r2[1] {
r1[1] = r2[1] r1[1] = r2[1]
} }
if r1[3] > r2[3] { if r1[3] > r2[3] {
r1[3] = r2[3] r1[3] = r2[3]
} }
if r1[1] > r1[3] { if r1[1] > r1[3] {
r1[1] = r1[3] r1[1] = r1[3]
} }
return r1 return r1
} }
func (r *Rasterizer8BitsSample) RenderEvenOdd(img *image.RGBA, color *image.RGBAColor, polygon *Polygon, tr [6]float64) { func (r *Rasterizer8BitsSample) RenderEvenOdd(img *image.RGBA, color *image.RGBAColor, polygon *Polygon, tr [6]float64) {
// memset 0 the mask buffer // memset 0 the mask buffer
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height) r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
// inline matrix multiplication // inline matrix multiplication
transform := [6]float64{ transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2], tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1], tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2], tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1], tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4], tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5], tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
} }
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT) clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound) clipRect = intersect(clipRect, r.ClipBound)
p := 0 p := 0
l := len(*polygon) / 2 l := len(*polygon) / 2
var edges [32]PolygonEdge var edges [32]PolygonEdge
for p < l { for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect) edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ { for k := 0; k < edgeCount; k++ {
r.addEvenOddEdge(&(edges[k])) r.addEvenOddEdge(&edges[k])
} }
p += 16 p += 16
} }
r.fillEvenOdd(img, color, clipRect) r.fillEvenOdd(img, color, clipRect)
} }
//! Adds an edge to be used with even-odd fill. //! Adds an edge to be used with even-odd fill.
func (r *Rasterizer8BitsSample) addEvenOddEdge(edge *PolygonEdge) { func (r *Rasterizer8BitsSample) addEvenOddEdge(edge *PolygonEdge) {
x := edge.X x := edge.X
slope := edge.Slope slope := edge.Slope
var ySub, mask SUBPIXEL_DATA var ySub, mask SUBPIXEL_DATA
var xp, yLine int var xp, yLine int
for y := edge.FirstLine; y <= edge.LastLine; y++ { for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = SUBPIXEL_DATA(y & (SUBPIXEL_COUNT - 1)) ySub = SUBPIXEL_DATA(y & (SUBPIXEL_COUNT - 1))
xp = (int)(x + SUBPIXEL_OFFSETS[ySub]) xp = int(x + SUBPIXEL_OFFSETS[ySub])
mask = SUBPIXEL_DATA(1 << ySub) mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] ^= mask r.MaskBuffer[yLine*r.BufferWidth+xp] ^= mask
x += slope x += slope
} }
} }
// Renders the mask to the canvas with even-odd fill. // Renders the mask to the canvas with even-odd fill.
func (r *Rasterizer8BitsSample) fillEvenOdd(img *image.RGBA, color *image.RGBAColor, clipBound [4]float64) { func (r *Rasterizer8BitsSample) fillEvenOdd(img *image.RGBA, color *image.RGBAColor, clipBound [4]float64) {
var x, y uint32 var x, y uint32
minX := uint32(clipBound[0]) minX := uint32(clipBound[0])
maxX := uint32(clipBound[2]) maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A) //pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color)) pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff cs1 := *pixColor & 0xff00ff
cs2 := (*pixColor >> 8) & 0xff00ff cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride) stride := uint32(img.Stride)
var mask SUBPIXEL_DATA var mask SUBPIXEL_DATA
for y = minY; y < maxY; y++ { for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:] tp := img.Pix[y*stride:]
mask = 0 mask = 0
for x = minX; x <= maxX; x++ { for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x])) p := (*uint32)(unsafe.Pointer(&tp[x]))
mask ^= r.MaskBuffer[y*uint32(r.BufferWidth)+x] mask ^= r.MaskBuffer[y*uint32(r.BufferWidth)+x]
// 8bits // 8bits
alpha := uint32(coverageTable[mask]) alpha := uint32(coverageTable[mask])
// 16bits // 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff]) //alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits // 32bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff]) //alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT // alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := uint32(SUBPIXEL_COUNT) - alpha invAlpha := uint32(SUBPIXEL_COUNT) - alpha
ct1 := (*p & 0xff00ff) * invAlpha ct1 := *p & 0xff00ff * invAlpha
ct2 := ((*p >> 8) & 0xff00ff) * invAlpha ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = ((ct1 + cs1*alpha) >> SUBPIXEL_SHIFT) & 0xff00ff ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = ((ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT)) & 0xff00ff00 ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2 *p = ct1 + ct2
} }
} }
} }
/* /*
* Renders the polygon with non-zero winding fill. * Renders the polygon with non-zero winding fill.
* param aTarget the target bitmap. * param aTarget the target bitmap.
* param aPolygon the polygon to render. * param aPolygon the polygon to render.
* param aColor the color to be used for rendering. * param aColor the color to be used for rendering.
* param aTransformation the transformation matrix. * param aTransformation the transformation matrix.
*/ */
func (r *Rasterizer8BitsSample) RenderNonZeroWinding(img *image.RGBA, color *image.RGBAColor, polygon *Polygon, tr [6]float64) { func (r *Rasterizer8BitsSample) RenderNonZeroWinding(img *image.RGBA, color *image.RGBAColor, polygon *Polygon, tr [6]float64) {
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height) r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*r.Height*SUBPIXEL_COUNT) r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*r.Height*SUBPIXEL_COUNT)
// inline matrix multiplication // inline matrix multiplication
transform := [6]float64{ transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2], tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1], tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2], tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1], tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4], tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5], tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
} }
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT) clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound) clipRect = intersect(clipRect, r.ClipBound)
p := 0 p := 0
l := len(*polygon) / 2 l := len(*polygon) / 2
var edges [32]PolygonEdge var edges [32]PolygonEdge
for p < l { for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect) edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ { for k := 0; k < edgeCount; k++ {
r.addNonZeroEdge(&(edges[k])) r.addNonZeroEdge(&edges[k])
} }
p += 16 p += 16
} }
r.fillNonZero(img, color, clipRect) r.fillNonZero(img, color, clipRect)
} }
//! Adds an edge to be used with non-zero winding fill. //! Adds an edge to be used with non-zero winding fill.
func (r *Rasterizer8BitsSample) addNonZeroEdge(edge *PolygonEdge) { func (r *Rasterizer8BitsSample) addNonZeroEdge(edge *PolygonEdge) {
x := edge.X x := edge.X
slope := edge.Slope slope := edge.Slope
var ySub, mask SUBPIXEL_DATA var ySub, mask SUBPIXEL_DATA
var xp, yLine int var xp, yLine int
winding := NON_ZERO_MASK_DATA_UNIT(edge.Winding) winding := NON_ZERO_MASK_DATA_UNIT(edge.Winding)
for y := edge.FirstLine; y <= edge.LastLine; y++ { for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = SUBPIXEL_DATA(y & (SUBPIXEL_COUNT - 1)) ySub = SUBPIXEL_DATA(y & (SUBPIXEL_COUNT - 1))
xp = (int)(x + SUBPIXEL_OFFSETS[ySub]) xp = int(x + SUBPIXEL_OFFSETS[ySub])
mask = SUBPIXEL_DATA(1 << ySub) mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] |= mask r.MaskBuffer[yLine*r.BufferWidth+xp] |= mask
r.WindingBuffer[(yLine*r.BufferWidth+xp)*SUBPIXEL_COUNT+int(ySub)] += winding r.WindingBuffer[(yLine*r.BufferWidth+xp)*SUBPIXEL_COUNT+int(ySub)] += winding
x += slope x += slope
} }
} }
//! Renders the mask to the canvas with non-zero winding fill. //! Renders the mask to the canvas with non-zero winding fill.
func (r *Rasterizer8BitsSample) fillNonZero(img *image.RGBA, color *image.RGBAColor, clipBound [4]float64) { func (r *Rasterizer8BitsSample) fillNonZero(img *image.RGBA, color *image.RGBAColor, clipBound [4]float64) {
var x, y uint32 var x, y uint32
minX := uint32(clipBound[0]) minX := uint32(clipBound[0])
maxX := uint32(clipBound[2]) maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A) //pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color)) pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff cs1 := *pixColor & 0xff00ff
cs2 := (*pixColor >> 8) & 0xff00ff cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride) stride := uint32(img.Stride)
var mask SUBPIXEL_DATA var mask SUBPIXEL_DATA
var n uint32 var n uint32
var values [SUBPIXEL_COUNT]NON_ZERO_MASK_DATA_UNIT var values [SUBPIXEL_COUNT]NON_ZERO_MASK_DATA_UNIT
for n = 0; n < SUBPIXEL_COUNT; n++ { for n = 0; n < SUBPIXEL_COUNT; n++ {
values[n] = 0 values[n] = 0
} }
for y = minY; y < maxY; y++ { for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:] tp := img.Pix[y*stride:]
mask = 0 mask = 0
for x = minX; x <= maxX; x++ { for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x])) p := (*uint32)(unsafe.Pointer(&tp[x]))
temp := r.MaskBuffer[y*uint32(r.BufferWidth)+x] temp := r.MaskBuffer[y*uint32(r.BufferWidth)+x]
if temp != 0 { if temp != 0 {
var bit SUBPIXEL_DATA = 1 var bit SUBPIXEL_DATA = 1
for n = 0; n < SUBPIXEL_COUNT; n++ { for n = 0; n < SUBPIXEL_COUNT; n++ {
if (temp & bit) != 0 { if temp&bit != 0 {
t := values[n] t := values[n]
values[n] += r.WindingBuffer[(y*uint32(r.BufferWidth)+x)*SUBPIXEL_COUNT+n] values[n] += r.WindingBuffer[(y*uint32(r.BufferWidth)+x)*SUBPIXEL_COUNT+n]
if (t == 0 || values[n] == 0 )&& t != values[n] { if (t == 0 || values[n] == 0) && t != values[n] {
mask ^= bit mask ^= bit
} }
} }
bit <<= 1 bit <<= 1
} }
} }
// 8bits // 8bits
alpha := uint32(coverageTable[mask]) alpha := uint32(coverageTable[mask])
// 16bits // 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff]) //alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits // 32bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff]) //alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT // alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := uint32(SUBPIXEL_COUNT) - alpha invAlpha := uint32(SUBPIXEL_COUNT) - alpha
ct1 := (*p & 0xff00ff) * invAlpha ct1 := *p & 0xff00ff * invAlpha
ct2 := ((*p >> 8) & 0xff00ff) * invAlpha ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = ((ct1 + cs1*alpha) >> SUBPIXEL_SHIFT) & 0xff00ff ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = ((ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT)) & 0xff00ff00 ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2 *p = ct1 + ct2
} }
} }
} }

View file

@ -0,0 +1,320 @@
// Copyright 2011 The draw2d Authors. All rights reserved.
// created: 27/05/2011 by Laurent Le Goff
package raster
import (
"image"
"unsafe"
)
const (
SUBPIXEL_SHIFT = 5
SUBPIXEL_COUNT = 1 << SUBPIXEL_SHIFT
)
var SUBPIXEL_OFFSETS = SUBPIXEL_OFFSETS_SAMPLE_32_FIXED
type SUBPIXEL_DATA uint32
type NON_ZERO_MASK_DATA_UNIT uint8
type Rasterizer8BitsSample struct {
MaskBuffer []SUBPIXEL_DATA
WindingBuffer []NON_ZERO_MASK_DATA_UNIT
Width int
BufferWidth int
Height int
ClipBound [4]float64
RemappingMatrix [6]float64
}
/* width and height define the maximum output size for the filler.
* The filler will output to larger bitmaps as well, but the output will
* be cropped.
*/
func NewRasterizer8BitsSample(width, height int) *Rasterizer8BitsSample {
var r Rasterizer8BitsSample
// Scale the coordinates by SUBPIXEL_COUNT in vertical direction
// The sampling point for the sub-pixel is at the top right corner. This
// adjustment moves it to the pixel center.
r.RemappingMatrix = [6]float64{1, 0, 0, SUBPIXEL_COUNT, 0.5 / SUBPIXEL_COUNT, -0.5 * SUBPIXEL_COUNT}
r.Width = width
r.Height = height
// The buffer used for filling needs to be one pixel wider than the bitmap.
// This is because the end flag that turns the fill of is the first pixel
// after the actually drawn edge.
r.BufferWidth = width + 1
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*height*SUBPIXEL_COUNT)
r.ClipBound = clip(0, 0, width, height, SUBPIXEL_COUNT)
return &r
}
func clip(x, y, width, height, scale int) [4]float64 {
var clipBound [4]float64
offset := 0.99 / float64(scale)
clipBound[0] = float64(x) + offset
clipBound[2] = float64(x+width) - offset
clipBound[1] = float64(y * scale)
clipBound[3] = float64((y + height) * scale)
return clipBound
}
func intersect(r1, r2 [4]float64) [4]float64 {
if r1[0] < r2[0] {
r1[0] = r2[0]
}
if r1[2] > r2[2] {
r1[2] = r2[2]
}
if r1[0] > r1[2] {
r1[0] = r1[2]
}
if r1[1] < r2[1] {
r1[1] = r2[1]
}
if r1[3] > r2[3] {
r1[3] = r2[3]
}
if r1[1] > r1[3] {
r1[1] = r1[3]
}
return r1
}
func (r *Rasterizer8BitsSample) RenderEvenOdd(img *image.RGBA, color *image.RGBAColor, polygon *Polygon, tr [6]float64) {
// memset 0 the mask buffer
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
// inline matrix multiplication
transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
}
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound)
p := 0
l := len(*polygon) / 2
var edges [32]PolygonEdge
for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ {
r.addEvenOddEdge(&edges[k])
}
p += 16
}
r.fillEvenOdd(img, color, clipRect)
}
//! Adds an edge to be used with even-odd fill.
func (r *Rasterizer8BitsSample) addEvenOddEdge(edge *PolygonEdge) {
x := Fix(edge.X * FIXED_FLOAT_COEF)
slope := Fix(edge.Slope * FIXED_FLOAT_COEF)
slopeFix := Fix(0)
if edge.LastLine-edge.FirstLine >= SLOPE_FIX_STEP {
slopeFix = Fix(edge.Slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) - slope<<SLOPE_FIX_SHIFT
}
var mask SUBPIXEL_DATA
var ySub uint32
var xp, yLine int
for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = uint32(y & (SUBPIXEL_COUNT - 1))
xp = int((x + SUBPIXEL_OFFSETS[ySub]) >> FIXED_SHIFT)
mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] ^= mask
x += slope
if y&SLOPE_FIX_MASK == 0 {
x += slopeFix
}
}
}
//! Adds an edge to be used with non-zero winding fill.
func (r *Rasterizer8BitsSample) addNonZeroEdge(edge *PolygonEdge) {
x := Fix(edge.X * FIXED_FLOAT_COEF)
slope := Fix(edge.Slope * FIXED_FLOAT_COEF)
slopeFix := Fix(0)
if edge.LastLine-edge.FirstLine >= SLOPE_FIX_STEP {
slopeFix = Fix(edge.Slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) - slope<<SLOPE_FIX_SHIFT
}
var mask SUBPIXEL_DATA
var ySub uint32
var xp, yLine int
winding := NON_ZERO_MASK_DATA_UNIT(edge.Winding)
for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = uint32(y & (SUBPIXEL_COUNT - 1))
xp = int((x + SUBPIXEL_OFFSETS[ySub]) >> FIXED_SHIFT)
mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] |= mask
r.WindingBuffer[(yLine*r.BufferWidth+xp)*SUBPIXEL_COUNT+int(ySub)] += winding
x += slope
if y&SLOPE_FIX_MASK == 0 {
x += slopeFix
}
}
}
// Renders the mask to the canvas with even-odd fill.
func (r *Rasterizer8BitsSample) fillEvenOdd(img *image.RGBA, color *image.RGBAColor, clipBound [4]float64) {
var x, y uint32
minX := uint32(clipBound[0])
maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff
cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride)
var mask SUBPIXEL_DATA
for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:]
mask = 0
for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x]))
mask ^= r.MaskBuffer[y*uint32(r.BufferWidth)+x]
// 8bits
//alpha := uint32(coverageTable[mask])
// 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits
alpha := uint32(coverageTable[mask&0xff] + coverageTable[mask>>8&0xff] + coverageTable[mask>>16&0xff] + coverageTable[mask>>24&0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := uint32(SUBPIXEL_COUNT) - alpha
ct1 := *p & 0xff00ff * invAlpha
ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2
}
}
}
/*
* Renders the polygon with non-zero winding fill.
* param aTarget the target bitmap.
* param aPolygon the polygon to render.
* param aColor the color to be used for rendering.
* param aTransformation the transformation matrix.
*/
func (r *Rasterizer8BitsSample) RenderNonZeroWinding(img *image.RGBA, color *image.RGBAColor, polygon *Polygon, tr [6]float64) {
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*r.Height*SUBPIXEL_COUNT)
// inline matrix multiplication
transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
}
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound)
p := 0
l := len(*polygon) / 2
var edges [32]PolygonEdge
for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ {
r.addNonZeroEdge(&edges[k])
}
p += 16
}
r.fillNonZero(img, color, clipRect)
}
//! Renders the mask to the canvas with non-zero winding fill.
func (r *Rasterizer8BitsSample) fillNonZero(img *image.RGBA, color *image.RGBAColor, clipBound [4]float64) {
var x, y uint32
minX := uint32(clipBound[0])
maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff
cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride)
var mask SUBPIXEL_DATA
var n uint32
var values [SUBPIXEL_COUNT]NON_ZERO_MASK_DATA_UNIT
for n = 0; n < SUBPIXEL_COUNT; n++ {
values[n] = 0
}
for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:]
mask = 0
for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x]))
temp := r.MaskBuffer[y*uint32(r.BufferWidth)+x]
if temp != 0 {
var bit SUBPIXEL_DATA = 1
for n = 0; n < SUBPIXEL_COUNT; n++ {
if temp&bit != 0 {
t := values[n]
values[n] += r.WindingBuffer[(y*uint32(r.BufferWidth)+x)*SUBPIXEL_COUNT+n]
if (t == 0 || values[n] == 0) && t != values[n] {
mask ^= bit
}
}
bit <<= 1
}
}
// 8bits
//alpha := uint32(coverageTable[mask])
// 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits
alpha := uint32(coverageTable[mask&0xff] + coverageTable[mask>>8&0xff] + coverageTable[mask>>16&0xff] + coverageTable[mask>>24&0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := uint32(SUBPIXEL_COUNT) - alpha
ct1 := *p & 0xff00ff * invAlpha
ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2
}
}
}

View file

@ -3,7 +3,7 @@ package raster
type Fix int32 type Fix int32
const ( const (
FIXED_SHIFT = 16 FIXED_SHIFT = 16
FIXED_FLOAT_COEF = 1 << FIXED_SHIFT FIXED_FLOAT_COEF = 1 << FIXED_SHIFT
) )
@ -12,6 +12,6 @@ const (
*/ */
const ( const (
SLOPE_FIX_SHIFT = 8 SLOPE_FIX_SHIFT = 8
SLOPE_FIX_STEP = 1 << SLOPE_FIX_SHIFT SLOPE_FIX_STEP = 1 << SLOPE_FIX_SHIFT
SLOPE_FIX_MASK = SLOPE_FIX_STEP - 1 SLOPE_FIX_MASK = SLOPE_FIX_STEP - 1
) )

View file

@ -2,10 +2,6 @@
// created: 27/05/2011 by Laurent Le Goff // created: 27/05/2011 by Laurent Le Goff
package raster package raster
import (
"math"
)
const ( const (
POLYGON_CLIP_NONE = iota POLYGON_CLIP_NONE = iota
POLYGON_CLIP_LEFT POLYGON_CLIP_LEFT
@ -23,6 +19,15 @@ type PolygonEdge struct {
Winding int16 Winding int16
} }
//! A more optimized representation of a polygon edge.
type PolygonScanEdge struct {
FirstLine, LastLine int
Winding int16
X Fix
Slope Fix
SlopeFix Fix
NextEdge *PolygonScanEdge
}
//! Calculates the edges of the polygon with transformation and clipping to edges array. //! Calculates the edges of the polygon with transformation and clipping to edges array.
/*! \param startIndex the index for the first vertex. /*! \param startIndex the index for the first vertex.
@ -34,7 +39,7 @@ type PolygonEdge struct {
*/ */
func (p Polygon) getEdges(startIndex, vertexCount int, edges []PolygonEdge, tr [6]float64, clipBound [4]float64) int { func (p Polygon) getEdges(startIndex, vertexCount int, edges []PolygonEdge, tr [6]float64, clipBound [4]float64) int {
startIndex = startIndex * 2 startIndex = startIndex * 2
endIndex := startIndex + (vertexCount * 2) endIndex := startIndex + vertexCount*2
if endIndex > len(p) { if endIndex > len(p) {
endIndex = len(p) endIndex = len(p)
} }
@ -85,20 +90,20 @@ func (p Polygon) getEdges(startIndex, vertexCount int, edges []PolygonEdge, tr [
clipUnion = prevClipFlags & clipFlags clipUnion = prevClipFlags & clipFlags
// Skip all edges that are either completely outside at the top or at the bottom. // Skip all edges that are either completely outside at the top or at the bottom.
if (clipUnion & (POLYGON_CLIP_TOP | POLYGON_CLIP_BOTTOM)) == 0 { if clipUnion&(POLYGON_CLIP_TOP|POLYGON_CLIP_BOTTOM) == 0 {
if (clipUnion & POLYGON_CLIP_RIGHT) != 0 { if clipUnion&POLYGON_CLIP_RIGHT != 0 {
// Both clip to right, edge is a vertical line on the right side // Both clip to right, edge is a vertical line on the right side
if getVerticalEdge(prevY, y, clipBound[2], &(edges[edgeCount]), clipBound) { if getVerticalEdge(prevY, y, clipBound[2], &edges[edgeCount], clipBound) {
edgeCount++ edgeCount++
} }
} else if (clipUnion & POLYGON_CLIP_LEFT) != 0 { } else if clipUnion&POLYGON_CLIP_LEFT != 0 {
// Both clip to left, edge is a vertical line on the left side // Both clip to left, edge is a vertical line on the left side
if getVerticalEdge(prevY, y, clipBound[0], &(edges[edgeCount]), clipBound) { if getVerticalEdge(prevY, y, clipBound[0], &edges[edgeCount], clipBound) {
edgeCount++ edgeCount++
} }
} else if (clipSum & (POLYGON_CLIP_RIGHT | POLYGON_CLIP_LEFT)) == 0 { } else if clipSum&(POLYGON_CLIP_RIGHT|POLYGON_CLIP_LEFT) == 0 {
// No clipping in the horizontal direction // No clipping in the horizontal direction
if getEdge(prevX, prevY, x, y, &(edges[edgeCount]), clipBound) { if getEdge(prevX, prevY, x, y, &edges[edgeCount], clipBound) {
edgeCount++ edgeCount++
} }
} else { } else {
@ -116,7 +121,7 @@ func (p Polygon) getEdges(startIndex, vertexCount int, edges []PolygonEdge, tr [
slope := (yright - yleft) / (xright - xleft) slope := (yright - yleft) / (xright - xleft)
if (clipSum & POLYGON_CLIP_RIGHT) != 0 { if clipSum&POLYGON_CLIP_RIGHT != 0 {
// calculate new position for the right vertex // calculate new position for the right vertex
oldY = yright oldY = yright
maxX = clipBound[2] maxX = clipBound[2]
@ -125,13 +130,13 @@ func (p Polygon) getEdges(startIndex, vertexCount int, edges []PolygonEdge, tr [
xright = maxX xright = maxX
// add vertical edge for the overflowing part // add vertical edge for the overflowing part
if getVerticalEdge(yright, oldY, maxX, &(edges[edgeCount]), clipBound) { if getVerticalEdge(yright, oldY, maxX, &edges[edgeCount], clipBound) {
edges[edgeCount].Winding *= swapWinding edges[edgeCount].Winding *= swapWinding
edgeCount++ edgeCount++
} }
} }
if (clipSum & POLYGON_CLIP_LEFT) != 0 { if clipSum&POLYGON_CLIP_LEFT != 0 {
// calculate new position for the left vertex // calculate new position for the left vertex
oldY = yleft oldY = yleft
minX = clipBound[0] minX = clipBound[0]
@ -140,13 +145,13 @@ func (p Polygon) getEdges(startIndex, vertexCount int, edges []PolygonEdge, tr [
xleft = minX xleft = minX
// add vertical edge for the overflowing part // add vertical edge for the overflowing part
if getVerticalEdge(oldY, yleft, minX, &(edges[edgeCount]), clipBound) { if getVerticalEdge(oldY, yleft, minX, &edges[edgeCount], clipBound) {
edges[edgeCount].Winding *= swapWinding edges[edgeCount].Winding *= swapWinding
edgeCount++ edgeCount++
} }
} }
if getEdge(xleft, yleft, xright, yright, &(edges[edgeCount]), clipBound) { if getEdge(xleft, yleft, xright, yright, &edges[edgeCount], clipBound) {
edges[edgeCount].Winding *= swapWinding edges[edgeCount].Winding *= swapWinding
edgeCount++ edgeCount++
} }
@ -192,8 +197,8 @@ func getEdge(x0, y0, x1, y1 float64, edge *PolygonEdge, clipBound [4]float64) bo
// also round to zero. The problems in this range can be avoided by // also round to zero. The problems in this range can be avoided by
// adding one to the values before conversion and subtracting after it. // adding one to the values before conversion and subtracting after it.
firstLine := int(math.Floor(startY)) + 1 firstLine := int(startY + 1)
lastLine := int(math.Floor(endY)) lastLine := int(endY+1) - 1
minClip := int(clipBound[1]) minClip := int(clipBound[1])
maxClip := int(clipBound[3]) maxClip := int(clipBound[3])
@ -241,8 +246,8 @@ func getVerticalEdge(startY, endY, x float64, edge *PolygonEdge, clipBound [4]fl
winding = -1 winding = -1
} }
firstLine := int(math.Floor(start)) + 1 firstLine := int(start + 1)
lastLine := int(math.Floor(end)) lastLine := int(end+1) - 1
minClip := int(clipBound[1]) minClip := int(clipBound[1])
maxClip := int(clipBound[3]) maxClip := int(clipBound[3])
@ -271,3 +276,309 @@ func getVerticalEdge(startY, endY, x float64, edge *PolygonEdge, clipBound [4]fl
return true return true
} }
type VertexData struct {
X, Y float64
ClipFlags int
Line int
}
//! Calculates the edges of the polygon with transformation and clipping to edges array.
/*! Note that this may return upto three times the amount of edges that the polygon has vertices,
* in the unlucky case where both left and right side get clipped for all edges.
* \param edges the array for result edges. This should be able to contain 2*aVertexCount edges.
* \param aTransformation the transformation matrix for the polygon.
* \param aClipRectangle the clip rectangle.
* \return the amount of edges in the result.
*/
func (p Polygon) getScanEdges(edges []PolygonScanEdge, tr [6]float64, clipBound [4]float64) int {
var n int
vertexData := make([]VertexData, len(p)/2+1)
for n = 0; n < len(vertexData)-1; n = n + 1 {
k := n * 2
vertexData[n].X = p[k]*tr[0] + p[k+1]*tr[2] + tr[4]
vertexData[n].Y = p[k]*tr[1] + p[k+1]*tr[3] + tr[5]
// Calculate clip flags for all vertices.
vertexData[n].ClipFlags = POLYGON_CLIP_NONE
if vertexData[n].X < clipBound[0] {
vertexData[n].ClipFlags |= POLYGON_CLIP_LEFT
} else if vertexData[n].X >= clipBound[2] {
vertexData[n].ClipFlags |= POLYGON_CLIP_RIGHT
}
if vertexData[n].Y < clipBound[1] {
vertexData[n].ClipFlags |= POLYGON_CLIP_TOP
} else if vertexData[n].Y >= clipBound[3] {
vertexData[n].ClipFlags |= POLYGON_CLIP_BOTTOM
}
// Calculate line of the vertex. If the vertex is clipped by top or bottom, the line
// is determined by the clip rectangle.
if vertexData[n].ClipFlags&POLYGON_CLIP_TOP != 0 {
vertexData[n].Line = int(clipBound[1])
} else if vertexData[n].ClipFlags&POLYGON_CLIP_BOTTOM != 0 {
vertexData[n].Line = int(clipBound[3] - 1)
} else {
vertexData[n].Line = int(vertexData[n].Y+1) - 1
}
}
// Copy the data from 0 to the last entry to make the data to loop.
vertexData[len(vertexData)-1] = vertexData[0]
// Transform the first vertex; store.
// Process mVertexCount - 1 times, next is n+1
// copy the first vertex to
// Process 1 time, next is n
edgeCount := 0
for n = 0; n < len(vertexData)-1; n++ {
clipSum := vertexData[n].ClipFlags | vertexData[n+1].ClipFlags
clipUnion := vertexData[n].ClipFlags & vertexData[n+1].ClipFlags
if clipUnion&(POLYGON_CLIP_TOP|POLYGON_CLIP_BOTTOM) == 0 &&
vertexData[n].Line != vertexData[n+1].Line {
var startIndex, endIndex int
var winding int16
if vertexData[n].Y < vertexData[n+1].Y {
startIndex = n
endIndex = n + 1
winding = 1
} else {
startIndex = n + 1
endIndex = n
winding = -1
}
firstLine := vertexData[startIndex].Line + 1
lastLine := vertexData[endIndex].Line
if clipUnion&POLYGON_CLIP_RIGHT != 0 {
// Both clip to right, edge is a vertical line on the right side
edges[edgeCount].FirstLine = firstLine
edges[edgeCount].LastLine = lastLine
edges[edgeCount].Winding = winding
edges[edgeCount].X = Fix(clipBound[2] * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = 0
edges[edgeCount].SlopeFix = 0
edgeCount++
} else if clipUnion&POLYGON_CLIP_LEFT != 0 {
// Both clip to left, edge is a vertical line on the left side
edges[edgeCount].FirstLine = firstLine
edges[edgeCount].LastLine = lastLine
edges[edgeCount].Winding = winding
edges[edgeCount].X = Fix(clipBound[0] * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = 0
edges[edgeCount].SlopeFix = 0
edgeCount++
} else if clipSum&(POLYGON_CLIP_RIGHT|POLYGON_CLIP_LEFT) == 0 {
// No clipping in the horizontal direction
slope := (vertexData[endIndex].X -
vertexData[startIndex].X) /
(vertexData[endIndex].Y -
vertexData[startIndex].Y)
// If there is vertical clip (for the top) it will be processed here. The calculation
// should be done for all non-clipping edges as well to determine the accurate position
// where the edge crosses the first scanline.
startx := vertexData[startIndex].X +
(float64(firstLine)-vertexData[startIndex].Y)*slope
edges[edgeCount].FirstLine = firstLine
edges[edgeCount].LastLine = lastLine
edges[edgeCount].Winding = winding
edges[edgeCount].X = Fix(startx * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = Fix(slope * FIXED_FLOAT_COEF)
if lastLine-firstLine >= SLOPE_FIX_STEP {
edges[edgeCount].SlopeFix = Fix(slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) -
edges[edgeCount].Slope<<SLOPE_FIX_SHIFT
} else {
edges[edgeCount].SlopeFix = 0
}
edgeCount++
} else {
// Clips to left or right or both.
slope := (vertexData[endIndex].X -
vertexData[startIndex].X) /
(vertexData[endIndex].Y -
vertexData[startIndex].Y)
// The edge may clip to both left and right.
// The clip results in one or two new vertices, and one to three segments.
// The rounding for scanlines may produce a result where any of the segments is
// ignored.
// The start is always above the end. Calculate the clip positions to clipVertices.
// It is possible that only one of the vertices exist. This will be detected from the
// clip flags of the vertex later, so they are initialized here.
var clipVertices [2]VertexData
if vertexData[startIndex].X <
vertexData[endIndex].X {
clipVertices[0].X = clipBound[0]
clipVertices[1].X = clipBound[2]
clipVertices[0].ClipFlags = POLYGON_CLIP_LEFT
clipVertices[1].ClipFlags = POLYGON_CLIP_RIGHT
} else {
clipVertices[0].X = clipBound[2]
clipVertices[1].X = clipBound[0]
clipVertices[0].ClipFlags = POLYGON_CLIP_RIGHT
clipVertices[1].ClipFlags = POLYGON_CLIP_LEFT
}
var p int
for p = 0; p < 2; p++ {
// Check if either of the vertices crosses the edge marked for the clip vertex
if clipSum&clipVertices[p].ClipFlags != 0 {
// The the vertex is required, calculate it.
clipVertices[p].Y = vertexData[startIndex].Y +
(clipVertices[p].X-
vertexData[startIndex].X)/slope
// If there is clipping in the vertical direction, the new vertex may be clipped.
if clipSum&(POLYGON_CLIP_TOP|POLYGON_CLIP_BOTTOM) != 0 {
if clipVertices[p].Y < clipBound[1] {
clipVertices[p].ClipFlags = POLYGON_CLIP_TOP
clipVertices[p].Line = int(clipBound[1])
} else if clipVertices[p].Y > clipBound[3] {
clipVertices[p].ClipFlags = POLYGON_CLIP_BOTTOM
clipVertices[p].Line = int(clipBound[3] - 1)
} else {
clipVertices[p].ClipFlags = 0
clipVertices[p].Line = int(clipVertices[p].Y+1) - 1
}
} else {
clipVertices[p].ClipFlags = 0
clipVertices[p].Line = int(clipVertices[p].Y+1) - 1
}
}
}
// Now there are three or four vertices, in the top-to-bottom order of start, clip0, clip1,
// end. What kind of edges are required for connecting these can be determined from the
// clip flags.
// -if clip vertex has horizontal clip flags, it doesn't exist. No edge is generated.
// -if start vertex or end vertex has horizontal clip flag, the edge to/from the clip vertex is vertical
// -if the line of two vertices is the same, the edge is not generated, since the edge doesn't
// cross any scanlines.
// The alternative patterns are:
// start - clip0 - clip1 - end
// start - clip0 - end
// start - clip1 - end
var topClipIndex, bottomClipIndex int
if (clipVertices[0].ClipFlags|clipVertices[1].ClipFlags)&
(POLYGON_CLIP_LEFT|POLYGON_CLIP_RIGHT) == 0 {
// Both sides are clipped, the order is start-clip0-clip1-end
topClipIndex = 0
bottomClipIndex = 1
// Add the edge from clip0 to clip1
// Check that the line is different for the vertices.
if clipVertices[0].Line != clipVertices[1].Line {
firstClipLine := clipVertices[0].Line + 1
startx := vertexData[startIndex].X +
(float64(firstClipLine)-vertexData[startIndex].Y)*slope
edges[edgeCount].X = Fix(startx * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = Fix(slope * FIXED_FLOAT_COEF)
edges[edgeCount].FirstLine = firstClipLine
edges[edgeCount].LastLine = clipVertices[1].Line
edges[edgeCount].Winding = winding
if edges[edgeCount].LastLine-edges[edgeCount].FirstLine >= SLOPE_FIX_STEP {
edges[edgeCount].SlopeFix = Fix(slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) -
edges[edgeCount].Slope<<SLOPE_FIX_SHIFT
} else {
edges[edgeCount].SlopeFix = 0
}
edgeCount++
}
} else {
// Clip at either side, check which side. The clip flag is on for the vertex
// that doesn't exist, i.e. has not been clipped to be inside the rect.
if clipVertices[0].ClipFlags&(POLYGON_CLIP_LEFT|POLYGON_CLIP_RIGHT) != 0 {
topClipIndex = 1
bottomClipIndex = 1
} else {
topClipIndex = 0
bottomClipIndex = 0
}
}
// Generate the edges from start - clip top and clip bottom - end
// Clip top and clip bottom may be the same vertex if there is only one
// clipped vertex.
// Check that the line is different for the vertices.
if vertexData[startIndex].Line != clipVertices[topClipIndex].Line {
edges[edgeCount].FirstLine = firstLine
edges[edgeCount].LastLine = clipVertices[topClipIndex].Line
edges[edgeCount].Winding = winding
// If startIndex is clipped, the edge is a vertical one.
if vertexData[startIndex].ClipFlags&(POLYGON_CLIP_LEFT|POLYGON_CLIP_RIGHT) != 0 {
edges[edgeCount].X = Fix(clipVertices[topClipIndex].X * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = 0
edges[edgeCount].SlopeFix = 0
} else {
startx := vertexData[startIndex].X +
(float64(firstLine)-vertexData[startIndex].Y)*slope
edges[edgeCount].X = Fix(startx * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = Fix(slope * FIXED_FLOAT_COEF)
if edges[edgeCount].LastLine-edges[edgeCount].FirstLine >= SLOPE_FIX_STEP {
edges[edgeCount].SlopeFix = Fix(slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) -
edges[edgeCount].Slope<<SLOPE_FIX_SHIFT
} else {
edges[edgeCount].SlopeFix = 0
}
}
edgeCount++
}
// Check that the line is different for the vertices.
if clipVertices[bottomClipIndex].Line != vertexData[endIndex].Line {
firstClipLine := clipVertices[bottomClipIndex].Line + 1
edges[edgeCount].FirstLine = firstClipLine
edges[edgeCount].LastLine = lastLine
edges[edgeCount].Winding = winding
// If endIndex is clipped, the edge is a vertical one.
if vertexData[endIndex].ClipFlags&(POLYGON_CLIP_LEFT|POLYGON_CLIP_RIGHT) != 0 {
edges[edgeCount].X = Fix(clipVertices[bottomClipIndex].X * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = 0
edges[edgeCount].SlopeFix = 0
} else {
startx := vertexData[startIndex].X +
(float64(firstClipLine)-vertexData[startIndex].Y)*slope
edges[edgeCount].X = Fix(startx * FIXED_FLOAT_COEF)
edges[edgeCount].Slope = Fix(slope * FIXED_FLOAT_COEF)
if edges[edgeCount].LastLine-edges[edgeCount].FirstLine >= SLOPE_FIX_STEP {
edges[edgeCount].SlopeFix = Fix(slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) -
edges[edgeCount].Slope<<SLOPE_FIX_SHIFT
} else {
edges[edgeCount].SlopeFix = 0
}
}
edgeCount++
}
}
}
}
return edgeCount
}

View file

@ -1,157 +1,201 @@
package raster package raster
import ( import (
"testing" "testing"
"log" "log"
"image" "image"
"os" "os"
"bufio" "bufio"
"image/png" "image/png"
"draw2d.googlecode.com/hg/draw2d/curve" "draw2d.googlecode.com/hg/draw2d/curve"
"freetype-go.googlecode.com/hg/freetype/raster" "freetype-go.googlecode.com/hg/freetype/raster"
) )
var flattening_threshold float64 = 0.5 var flattening_threshold float64 = 0.5
func savepng(filePath string, m image.Image) { func savepng(filePath string, m image.Image) {
f, err := os.Create(filePath) f, err := os.Create(filePath)
if err != nil { if err != nil {
log.Println(err) log.Println(err)
os.Exit(1) os.Exit(1)
} }
defer f.Close() defer f.Close()
b := bufio.NewWriter(f) b := bufio.NewWriter(f)
err = png.Encode(b, m) err = png.Encode(b, m)
if err != nil { if err != nil {
log.Println(err) log.Println(err)
os.Exit(1) os.Exit(1)
} }
err = b.Flush() err = b.Flush()
if err != nil { if err != nil {
log.Println(err) log.Println(err)
os.Exit(1) os.Exit(1)
} }
} }
type Path struct { type Path struct {
points []float64 points []float64
} }
func (p *Path) LineTo(x, y float64) { func (p *Path) LineTo(x, y float64) {
if len(p.points)+2 > cap(p.points) { if len(p.points)+2 > cap(p.points) {
points := make([]float64, len(p.points)+2, len(p.points)+32) points := make([]float64, len(p.points)+2, len(p.points)+32)
copy(points, p.points) copy(points, p.points)
p.points = points p.points = points
} else { } else {
p.points = p.points[0 : len(p.points)+2] p.points = p.points[0 : len(p.points)+2]
} }
p.points[len(p.points)-2] = x p.points[len(p.points)-2] = x
p.points[len(p.points)-1] = y p.points[len(p.points)-1] = y
} }
func TestFreetype(t *testing.T) { func TestFreetype(t *testing.T) {
var p Path var p Path
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} p.LineTo(10, 190)
c.Segment(&p, flattening_threshold) c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
poly := Polygon(p.points) c.Segment(&p, flattening_threshold)
color := image.RGBAColor{0, 0, 0, 0xff} poly := Polygon(p.points)
color := image.RGBAColor{0, 0, 0, 0xff}
img := image.NewRGBA(200, 200)
rasterizer := raster.NewRasterizer(200, 200) img := image.NewRGBA(200, 200)
rasterizer.UseNonZeroWinding = false rasterizer := raster.NewRasterizer(200, 200)
rasterizer.Start(raster.Point{raster.Fix32(10 * 256), raster.Fix32(190 * 256)}) rasterizer.UseNonZeroWinding = false
for j := 0; j < len(poly); j = j + 2 { rasterizer.Start(raster.Point{raster.Fix32(10 * 256), raster.Fix32(190 * 256)})
rasterizer.Add1(raster.Point{raster.Fix32(poly[j] * 256), raster.Fix32(poly[j+1] * 256)}) for j := 0; j < len(poly); j = j + 2 {
} rasterizer.Add1(raster.Point{raster.Fix32(poly[j] * 256), raster.Fix32(poly[j+1] * 256)})
painter := raster.NewRGBAPainter(img) }
painter.SetColor(color) painter := raster.NewRGBAPainter(img)
rasterizer.Rasterize(painter) painter.SetColor(color)
rasterizer.Rasterize(painter)
savepng("_testFreetype.png", img)
} savepng("_testFreetype.png", img)
}
func TestRasterizer(t *testing.T) {
img := image.NewRGBA(200, 200) func TestFreetypeNonZeroWinding(t *testing.T) {
var p Path var p Path
p.LineTo(10, 190) p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold) c.Segment(&p, flattening_threshold)
poly := Polygon(p.points) poly := Polygon(p.points)
color := image.RGBAColor{0, 0, 0, 0xff} color := image.RGBAColor{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0}
r := NewRasterizer8BitsSample(200, 200) img := image.NewRGBA(200, 200)
rasterizer := raster.NewRasterizer(200, 200)
rasterizer.UseNonZeroWinding = true
rasterizer.Start(raster.Point{raster.Fix32(10 * 256), raster.Fix32(190 * 256)})
for j := 0; j < len(poly); j = j + 2 {
rasterizer.Add1(raster.Point{raster.Fix32(poly[j] * 256), raster.Fix32(poly[j+1] * 256)})
}
painter := raster.NewRGBAPainter(img)
painter.SetColor(color)
rasterizer.Rasterize(painter)
savepng("_testFreetypeNonZeroWinding.png", img)
}
func TestRasterizer(t *testing.T) {
img := image.NewRGBA(200, 200)
var p Path
p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold)
poly := Polygon(p.points)
color := image.RGBAColor{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0}
r := NewRasterizer8BitsSample(200, 200)
//PolylineBresenham(img, image.Black, poly...) //PolylineBresenham(img, image.Black, poly...)
r.RenderEvenOdd(img, &color, &poly, tr) r.RenderEvenOdd(img, &color, &poly, tr)
savepng("_testRasterizer.png", img) savepng("_testRasterizer.png", img)
} }
func TestRasterizerNonZeroWinding(t *testing.T) { func TestRasterizerNonZeroWinding(t *testing.T) {
img := image.NewRGBA(200, 200) img := image.NewRGBA(200, 200)
var p Path var p Path
p.LineTo(10, 190) p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold) c.Segment(&p, flattening_threshold)
poly := Polygon(p.points) poly := Polygon(p.points)
color := image.RGBAColor{0, 0, 0, 0xff} color := image.RGBAColor{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0} tr := [6]float64{1, 0, 0, 1, 0, 0}
r := NewRasterizer8BitsSample(200, 200) r := NewRasterizer8BitsSample(200, 200)
//PolylineBresenham(img, image.Black, poly...) //PolylineBresenham(img, image.Black, poly...)
r.RenderNonZeroWinding(img, &color, &poly, tr) r.RenderNonZeroWinding(img, &color, &poly, tr)
savepng("_testRasterizerNonZeroWinding.png", img) savepng("_testRasterizerNonZeroWinding.png", img)
} }
func BenchmarkFreetype(b *testing.B) { func BenchmarkFreetype(b *testing.B) {
var p Path var p Path
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} p.LineTo(10, 190)
c.Segment(&p, flattening_threshold) c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
poly := Polygon(p.points) c.Segment(&p, flattening_threshold)
color := image.RGBAColor{0, 0, 0, 0xff} poly := Polygon(p.points)
color := image.RGBAColor{0, 0, 0, 0xff}
for i := 0; i < b.N; i++ {
img := image.NewRGBA(200, 200) for i := 0; i < b.N; i++ {
rasterizer := raster.NewRasterizer(200, 200) img := image.NewRGBA(200, 200)
rasterizer.UseNonZeroWinding = false rasterizer := raster.NewRasterizer(200, 200)
rasterizer.Start(raster.Point{raster.Fix32(10 * 256), raster.Fix32(190 * 256)}) rasterizer.UseNonZeroWinding = false
for j := 0; j < len(poly); j = j + 2 { rasterizer.Start(raster.Point{raster.Fix32(10 * 256), raster.Fix32(190 * 256)})
rasterizer.Add1(raster.Point{raster.Fix32(poly[j] * 256), raster.Fix32(poly[j+1] * 256)}) for j := 0; j < len(poly); j = j + 2 {
} rasterizer.Add1(raster.Point{raster.Fix32(poly[j] * 256), raster.Fix32(poly[j+1] * 256)})
painter := raster.NewRGBAPainter(img) }
painter.SetColor(color) painter := raster.NewRGBAPainter(img)
rasterizer.Rasterize(painter) painter.SetColor(color)
} rasterizer.Rasterize(painter)
} }
}
func BenchmarkRasterizerNonZeroWinding(b *testing.B) { func BenchmarkFreetypeNonZeroWinding(b *testing.B) {
var p Path var p Path
p.LineTo(10, 190) p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold) c.Segment(&p, flattening_threshold)
poly := Polygon(p.points) poly := Polygon(p.points)
color := image.RGBAColor{0, 0, 0, 0xff} color := image.RGBAColor{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0}
for i := 0; i < b.N; i++ { for i := 0; i < b.N; i++ {
img := image.NewRGBA(200, 200) img := image.NewRGBA(200, 200)
rasterizer := NewRasterizer8BitsSample(200, 200) rasterizer := raster.NewRasterizer(200, 200)
rasterizer.RenderNonZeroWinding(img, &color, &poly, tr) rasterizer.UseNonZeroWinding = true
} rasterizer.Start(raster.Point{raster.Fix32(10 * 256), raster.Fix32(190 * 256)})
} for j := 0; j < len(poly); j = j + 2 {
rasterizer.Add1(raster.Point{raster.Fix32(poly[j] * 256), raster.Fix32(poly[j+1] * 256)})
func BenchmarkRasterizer(b *testing.B) { }
var p Path painter := raster.NewRGBAPainter(img)
p.LineTo(10, 190) painter.SetColor(color)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190} rasterizer.Rasterize(painter)
c.Segment(&p, flattening_threshold) }
poly := Polygon(p.points) }
color := image.RGBAColor{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0} func BenchmarkRasterizerNonZeroWinding(b *testing.B) {
for i := 0; i < b.N; i++ { var p Path
img := image.NewRGBA(200, 200) p.LineTo(10, 190)
rasterizer := NewRasterizer8BitsSample(200, 200) c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
rasterizer.RenderEvenOdd(img, &color, &poly, tr) c.Segment(&p, flattening_threshold)
} poly := Polygon(p.points)
} color := image.RGBAColor{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0}
for i := 0; i < b.N; i++ {
img := image.NewRGBA(200, 200)
rasterizer := NewRasterizer8BitsSample(200, 200)
rasterizer.RenderNonZeroWinding(img, &color, &poly, tr)
}
}
func BenchmarkRasterizer(b *testing.B) {
var p Path
p.LineTo(10, 190)
c := curve.CubicCurveFloat64{10, 190, 10, 10, 190, 10, 190, 190}
c.Segment(&p, flattening_threshold)
poly := Polygon(p.points)
color := image.RGBAColor{0, 0, 0, 0xff}
tr := [6]float64{1, 0, 0, 1, 0, 0}
for i := 0; i < b.N; i++ {
img := image.NewRGBA(200, 200)
rasterizer := NewRasterizer8BitsSample(200, 200)
rasterizer.RenderEvenOdd(img, &color, &poly, tr)
}
}