// Copyright 2010 The draw2d Authors. All rights reserved. // created: 17/05/2011 by Laurent Le Goff package draw2dbase import ( "math" ) const ( // CurveRecursionLimit represents the maximum recursion that is really necessary to subsivide a curve into straight lines CurveRecursionLimit = 32 ) // Cubic // x1, y1, cpx1, cpy1, cpx2, cpy2, x2, y2 float64 // SubdivideCubic a Bezier cubic curve in 2 equivalents Bezier cubic curves. // c1 and c2 parameters are the resulting curves func SubdivideCubic(c, c1, c2 []float64) { // First point of c is the first point of c1 c1[0], c1[1] = c[0], c[1] // Last point of c is the last point of c2 c2[6], c2[7] = c[6], c[7] // Subdivide segment using midpoints c1[2] = (c[0] + c[2]) / 2 c1[3] = (c[1] + c[3]) / 2 midX := (c[2] + c[4]) / 2 midY := (c[3] + c[5]) / 2 c2[4] = (c[4] + c[6]) / 2 c2[5] = (c[5] + c[7]) / 2 c1[4] = (c1[2] + midX) / 2 c1[5] = (c1[3] + midY) / 2 c2[2] = (midX + c2[4]) / 2 c2[3] = (midY + c2[5]) / 2 c1[6] = (c1[4] + c2[2]) / 2 c1[7] = (c1[5] + c2[3]) / 2 // Last Point of c1 is equal to the first point of c2 c2[0], c2[1] = c1[6], c1[7] } // TraceCubic generate lines subdividing the cubic curve using a Flattener // flattening_threshold helps determines the flattening expectation of the curve func TraceCubic(t Flattener, cubic []float64, flatteningThreshold float64) { // Allocation curves var curves [CurveRecursionLimit * 8]float64 copy(curves[0:8], cubic[0:8]) i := 0 // current curve var c []float64 var dx, dy, d2, d3 float64 for i >= 0 { c = curves[i*8:] dx = c[6] - c[0] dy = c[7] - c[1] d2 = math.Abs((c[2]-c[6])*dy - (c[3]-c[7])*dx) d3 = math.Abs((c[4]-c[6])*dy - (c[5]-c[7])*dx) // if it's flat then trace a line if (d2+d3)*(d2+d3) < flatteningThreshold*(dx*dx+dy*dy) || i == len(curves)-1 { t.LineTo(c[6], c[7]) i-- } else { // second half of bezier go lower onto the stack SubdivideCubic(c, curves[(i+1)*8:], curves[i*8:]) i++ } } } // Quad // x1, y1, cpx1, cpy2, x2, y2 float64 // SubdivideQuad a Bezier quad curve in 2 equivalents Bezier quad curves. // c1 and c2 parameters are the resulting curves func SubdivideQuad(c, c1, c2 []float64) { // First point of c is the first point of c1 c1[0], c1[1] = c[0], c[1] // Last point of c is the last point of c2 c2[4], c2[5] = c[4], c[5] // Subdivide segment using midpoints c1[2] = (c[0] + c[2]) / 2 c1[3] = (c[1] + c[3]) / 2 c2[2] = (c[2] + c[4]) / 2 c2[3] = (c[3] + c[5]) / 2 c1[4] = (c1[2] + c2[2]) / 2 c1[5] = (c1[3] + c2[3]) / 2 c2[0], c2[1] = c1[4], c1[5] return } // TraceQuad generate lines subdividing the curve using a Flattener // flattening_threshold helps determines the flattening expectation of the curve func TraceQuad(t Flattener, quad []float64, flatteningThreshold float64) { // Allocates curves stack var curves [CurveRecursionLimit * 6]float64 copy(curves[0:6], quad[0:6]) i := 0 // current curve var c []float64 var dx, dy, d float64 for i >= 0 { c = curves[i*6:] dx = c[4] - c[0] dy = c[5] - c[1] d = math.Abs(((c[2]-c[4])*dy - (c[3]-c[5])*dx)) // if it's flat then trace a line if (d*d) < flatteningThreshold*(dx*dx+dy*dy) || i == len(curves)-1 { t.LineTo(c[4], c[5]) i-- } else { // second half of bezier go lower onto the stack SubdivideQuad(c, curves[(i+1)*6:], curves[i*6:]) i++ } } } // TraceArc trace an arc using a Flattener func TraceArc(t Flattener, x, y, rx, ry, start, angle, scale float64) (lastX, lastY float64) { end := start + angle clockWise := true if angle < 0 { clockWise = false } ra := (math.Abs(rx) + math.Abs(ry)) / 2 da := math.Acos(ra/(ra+0.125/scale)) * 2 //normalize if !clockWise { da = -da } angle = start + da var curX, curY float64 for { if (angle < end-da/4) != clockWise { curX = x + math.Cos(end)*rx curY = y + math.Sin(end)*ry return curX, curY } curX = x + math.Cos(angle)*rx curY = y + math.Sin(angle)*ry angle += da t.LineTo(curX, curY) } }