// Copyright 2010 The draw2d Authors. All rights reserved. // created: 21/11/2010 by Laurent Le Goff // see http://pippin.gimp.org/image_processing/chap_resampling.html package draw2d import ( "image" "image/color" "image/draw" "math" ) // ImageFilter defines sampling filter (linear, bilinear or bicubic) type ImageFilter int const ( // LinearFilter uses linear interpolation LinearFilter ImageFilter = iota // BilinearFilter uses bilinear interpolation BilinearFilter // BicubicFilter uses bicubic interpolation BicubicFilter ) //see http://pippin.gimp.org/image_processing/chap_resampling.html func getColorLinear(img image.Image, x, y float64) color.Color { return img.At(int(x), int(y)) } func getColorBilinear(img image.Image, x, y float64) color.Color { x0 := math.Floor(x) y0 := math.Floor(y) dx := x - x0 dy := y - y0 rt, gt, bt, at := img.At(int(x0), int(y0)).RGBA() r0, g0, b0, a0 := float64(rt), float64(gt), float64(bt), float64(at) rt, gt, bt, at = img.At(int(x0+1), int(y0)).RGBA() r1, g1, b1, a1 := float64(rt), float64(gt), float64(bt), float64(at) rt, gt, bt, at = img.At(int(x0+1), int(y0+1)).RGBA() r2, g2, b2, a2 := float64(rt), float64(gt), float64(bt), float64(at) rt, gt, bt, at = img.At(int(x0), int(y0+1)).RGBA() r3, g3, b3, a3 := float64(rt), float64(gt), float64(bt), float64(at) r := int(lerp(lerp(r0, r1, dx), lerp(r3, r2, dx), dy)) g := int(lerp(lerp(g0, g1, dx), lerp(g3, g2, dx), dy)) b := int(lerp(lerp(b0, b1, dx), lerp(b3, b2, dx), dy)) a := int(lerp(lerp(a0, a1, dx), lerp(a3, a2, dx), dy)) return color.RGBA{uint8(r >> 8), uint8(g >> 8), uint8(b >> 8), uint8(a >> 8)} } /** -- LERP -- /lerp/, vi.,n. -- -- Quasi-acronym for Linear Interpolation, used as a verb or noun for -- the operation. "Bresenham's algorithm lerps incrementally between the -- two endpoints of the line." (From Jargon File (4.4.4, 14 Aug 2003) */ func lerp(v1, v2, ratio float64) float64 { return v1*(1-ratio) + v2*ratio } func getColorCubicRow(img image.Image, x, y, offset float64) color.Color { c0 := img.At(int(x), int(y)) c1 := img.At(int(x+1), int(y)) c2 := img.At(int(x+2), int(y)) c3 := img.At(int(x+3), int(y)) rt, gt, bt, at := c0.RGBA() r0, g0, b0, a0 := float64(rt), float64(gt), float64(bt), float64(at) rt, gt, bt, at = c1.RGBA() r1, g1, b1, a1 := float64(rt), float64(gt), float64(bt), float64(at) rt, gt, bt, at = c2.RGBA() r2, g2, b2, a2 := float64(rt), float64(gt), float64(bt), float64(at) rt, gt, bt, at = c3.RGBA() r3, g3, b3, a3 := float64(rt), float64(gt), float64(bt), float64(at) r, g, b, a := cubic(offset, r0, r1, r2, r3), cubic(offset, g0, g1, g2, g3), cubic(offset, b0, b1, b2, b3), cubic(offset, a0, a1, a2, a3) return color.RGBA{uint8(r >> 8), uint8(g >> 8), uint8(b >> 8), uint8(a >> 8)} } func getColorBicubic(img image.Image, x, y float64) color.Color { x0 := math.Floor(x) y0 := math.Floor(y) dx := x - x0 dy := y - y0 c0 := getColorCubicRow(img, x0-1, y0-1, dx) c1 := getColorCubicRow(img, x0-1, y0, dx) c2 := getColorCubicRow(img, x0-1, y0+1, dx) c3 := getColorCubicRow(img, x0-1, y0+2, dx) rt, gt, bt, at := c0.RGBA() r0, g0, b0, a0 := float64(rt), float64(gt), float64(bt), float64(at) rt, gt, bt, at = c1.RGBA() r1, g1, b1, a1 := float64(rt), float64(gt), float64(bt), float64(at) rt, gt, bt, at = c2.RGBA() r2, g2, b2, a2 := float64(rt), float64(gt), float64(bt), float64(at) rt, gt, bt, at = c3.RGBA() r3, g3, b3, a3 := float64(rt), float64(gt), float64(bt), float64(at) r, g, b, a := cubic(dy, r0, r1, r2, r3), cubic(dy, g0, g1, g2, g3), cubic(dy, b0, b1, b2, b3), cubic(dy, a0, a1, a2, a3) return color.RGBA{uint8(r >> 8), uint8(g >> 8), uint8(b >> 8), uint8(a >> 8)} } func cubic(offset, v0, v1, v2, v3 float64) uint32 { // offset is the offset of the sampled value between v1 and v2 return uint32(((((-7*v0+21*v1-21*v2+7*v3)*offset+ (15*v0-36*v1+27*v2-6*v3))*offset+ (-9*v0+9*v2))*offset + (v0 + 16*v1 + v2)) / 18.0) } // DrawImage draws a source image on an destination image. func DrawImage(src image.Image, dest draw.Image, tr MatrixTransform, op draw.Op, filter ImageFilter) { bounds := src.Bounds() x0, y0, x1, y1 := float64(bounds.Min.X), float64(bounds.Min.Y), float64(bounds.Max.X), float64(bounds.Max.Y) tr.TransformRectangle(&x0, &y0, &x1, &y1) var x, y, u, v float64 var c1, c2, cr color.Color var r, g, b, a, ia, r1, g1, b1, a1, r2, g2, b2, a2 uint32 var color color.RGBA for x = x0; x < x1; x++ { for y = y0; y < y1; y++ { u = x v = y tr.InverseTransform(&u, &v) if bounds.Min.X <= int(u) && bounds.Max.X > int(u) && bounds.Min.Y <= int(v) && bounds.Max.Y > int(v) { c1 = dest.At(int(x), int(y)) switch filter { case LinearFilter: c2 = src.At(int(u), int(v)) case BilinearFilter: c2 = getColorBilinear(src, u, v) case BicubicFilter: c2 = getColorBicubic(src, u, v) } switch op { case draw.Over: r1, g1, b1, a1 = c1.RGBA() r2, g2, b2, a2 = c2.RGBA() ia = M - a2 r = ((r1 * ia) / M) + r2 g = ((g1 * ia) / M) + g2 b = ((b1 * ia) / M) + b2 a = ((a1 * ia) / M) + a2 color.R = uint8(r >> 8) color.G = uint8(g >> 8) color.B = uint8(b >> 8) color.A = uint8(a >> 8) cr = color default: cr = c2 } dest.Set(int(x), int(y), cr) } } } }