// Copyright 2010 The draw2d Authors. All rights reserved. // created: 06/12/2010 by Laurent Le Goff package draw2d import ( "github.com/llgcode/draw2d/curve" "math" ) type PathConverter struct { converter LineBuilder ApproximationScale float64 startX, startY, x, y float64 } func NewPathConverter(converter LineBuilder) *PathConverter { return &PathConverter{converter, 1, 0, 0, 0, 0} } func (c *PathConverter) Convert(paths ...*PathStorage) { for _, path := range paths { i := 0 for _, cmd := range path.commands { switch cmd { case MoveTo: c.x, c.y = path.vertices[i], path.vertices[i+1] c.startX, c.startY = c.x, c.y if i != 0 { c.converter.End() } c.converter.MoveTo(c.x, c.y) i += 2 case LineTo: c.x, c.y = path.vertices[i], path.vertices[i+1] c.converter.LineTo(c.x, c.y) c.converter.NextCommand(LineJoinMarker) i += 2 case QuadCurveTo: curve.TraceQuad(c.converter, path.vertices[i-2:], 0.5) c.x, c.y = path.vertices[i+2], path.vertices[i+3] c.converter.LineTo(c.x, c.y) i += 4 case CubicCurveTo: curve.TraceCubic(c.converter, path.vertices[i-2:], 0.5) c.x, c.y = path.vertices[i+4], path.vertices[i+5] c.converter.LineTo(c.x, c.y) i += 6 case ArcTo: c.x, c.y = arc(c.converter, path.vertices[i], path.vertices[i+1], path.vertices[i+2], path.vertices[i+3], path.vertices[i+4], path.vertices[i+5], c.ApproximationScale) c.converter.LineTo(c.x, c.y) i += 6 case Close: c.converter.LineTo(c.startX, c.startY) c.converter.Close() } } c.converter.End() } } func (c *PathConverter) convertCommand(cmd PathCmd, vertices ...float64) int { return 0 } func (c *PathConverter) MoveTo(x, y float64) *PathConverter { c.x, c.y = x, y c.startX, c.startY = c.x, c.y c.converter.End() c.converter.MoveTo(c.x, c.y) return c } func (c *PathConverter) RMoveTo(dx, dy float64) *PathConverter { c.MoveTo(c.x+dx, c.y+dy) return c } func (c *PathConverter) LineTo(x, y float64) *PathConverter { c.x, c.y = x, y c.converter.LineTo(c.x, c.y) c.converter.NextCommand(LineJoinMarker) return c } func (c *PathConverter) RLineTo(dx, dy float64) *PathConverter { c.LineTo(c.x+dx, c.y+dy) return c } func (c *PathConverter) QuadCurveTo(cx, cy, x, y float64) *PathConverter { curve.TraceQuad(c.converter, []float64{c.x, c.y, cx, cy, x, y}, 0.5) c.x, c.y = x, y c.converter.LineTo(c.x, c.y) return c } func (c *PathConverter) RQuadCurveTo(dcx, dcy, dx, dy float64) *PathConverter { c.QuadCurveTo(c.x+dcx, c.y+dcy, c.x+dx, c.y+dy) return c } func (c *PathConverter) CubicCurveTo(cx1, cy1, cx2, cy2, x, y float64) *PathConverter { curve.TraceCubic(c.converter, []float64{c.x, c.y, cx1, cy1, cx2, cy2, x, y}, 0.5) c.x, c.y = x, y c.converter.LineTo(c.x, c.y) return c } func (c *PathConverter) RCubicCurveTo(dcx1, dcy1, dcx2, dcy2, dx, dy float64) *PathConverter { c.CubicCurveTo(c.x+dcx1, c.y+dcy1, c.x+dcx2, c.y+dcy2, c.x+dx, c.y+dy) return c } func (c *PathConverter) ArcTo(cx, cy, rx, ry, startAngle, angle float64) *PathConverter { endAngle := startAngle + angle clockWise := true if angle < 0 { clockWise = false } // normalize if clockWise { for endAngle < startAngle { endAngle += math.Pi * 2.0 } } else { for startAngle < endAngle { startAngle += math.Pi * 2.0 } } startX := cx + math.Cos(startAngle)*rx startY := cy + math.Sin(startAngle)*ry c.MoveTo(startX, startY) c.x, c.y = arc(c.converter, cx, cy, rx, ry, startAngle, angle, c.ApproximationScale) c.converter.LineTo(c.x, c.y) return c } func (c *PathConverter) RArcTo(dcx, dcy, rx, ry, startAngle, angle float64) *PathConverter { c.ArcTo(c.x+dcx, c.y+dcy, rx, ry, startAngle, angle) return c } func (c *PathConverter) Close() *PathConverter { c.converter.Close() return c }