draw2d/curve/curve_test.go

264 lines
7.5 KiB
Go

package curve
import (
"bufio"
"fmt"
"image"
"image/color"
"image/draw"
"image/png"
"log"
"os"
"testing"
"github.com/llgcode/draw2d/raster"
)
var (
flatteningThreshold = 0.5
testsCubicFloat64 = []CubicCurveFloat64{
CubicCurveFloat64{100, 100, 200, 100, 100, 200, 200, 200},
CubicCurveFloat64{100, 100, 300, 200, 200, 200, 300, 100},
CubicCurveFloat64{100, 100, 0, 300, 200, 0, 300, 300},
CubicCurveFloat64{150, 290, 10, 10, 290, 10, 150, 290},
CubicCurveFloat64{10, 290, 10, 10, 290, 10, 290, 290},
CubicCurveFloat64{100, 290, 290, 10, 10, 10, 200, 290},
}
testsQuadFloat64 = []QuadCurveFloat64{
QuadCurveFloat64{100, 100, 200, 100, 200, 200},
QuadCurveFloat64{100, 100, 290, 200, 290, 100},
QuadCurveFloat64{100, 100, 0, 290, 200, 290},
QuadCurveFloat64{150, 290, 10, 10, 290, 290},
QuadCurveFloat64{10, 290, 10, 10, 290, 290},
QuadCurveFloat64{100, 290, 290, 10, 120, 290},
}
)
type Path struct {
points []float64
}
func (p *Path) LineTo(x, y float64) {
if len(p.points)+2 > cap(p.points) {
points := make([]float64, len(p.points)+2, len(p.points)+32)
copy(points, p.points)
p.points = points
} else {
p.points = p.points[0 : len(p.points)+2]
}
p.points[len(p.points)-2] = x
p.points[len(p.points)-1] = y
}
func init() {
f, err := os.Create("_test.html")
if err != nil {
log.Println(err)
os.Exit(1)
}
defer f.Close()
log.Printf("Create html viewer")
f.Write([]byte("<html><body>"))
for i := 0; i < len(testsCubicFloat64); i++ {
f.Write([]byte(fmt.Sprintf("<div><img src='_testRec%d.png'/>\n<img src='_test%d.png'/>\n<img src='_testAdaptiveRec%d.png'/>\n<img src='_testAdaptive%d.png'/>\n<img src='_testParabolic%d.png'/>\n</div>\n", i, i, i, i, i)))
}
for i := 0; i < len(testsQuadFloat64); i++ {
f.Write([]byte(fmt.Sprintf("<div><img src='_testQuad%d.png'/>\n</div>\n", i)))
}
f.Write([]byte("</body></html>"))
}
func savepng(filePath string, m image.Image) {
f, err := os.Create(filePath)
if err != nil {
log.Println(err)
os.Exit(1)
}
defer f.Close()
b := bufio.NewWriter(f)
err = png.Encode(b, m)
if err != nil {
log.Println(err)
os.Exit(1)
}
err = b.Flush()
if err != nil {
log.Println(err)
os.Exit(1)
}
}
func drawPoints(img draw.Image, c color.Color, s ...float64) image.Image {
/*for i := 0; i < len(s); i += 2 {
x, y := int(s[i]+0.5), int(s[i+1]+0.5)
img.Set(x, y, c)
img.Set(x, y+1, c)
img.Set(x, y-1, c)
img.Set(x+1, y, c)
img.Set(x+1, y+1, c)
img.Set(x+1, y-1, c)
img.Set(x-1, y, c)
img.Set(x-1, y+1, c)
img.Set(x-1, y-1, c)
}*/
return img
}
func TestCubicCurveRec(t *testing.T) {
for i, curve := range testsCubicFloat64 {
var p Path
p.LineTo(curve[0], curve[1])
curve.SegmentRec(&p, flatteningThreshold)
img := image.NewNRGBA(image.Rect(0, 0, 300, 300))
raster.PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, curve[:]...)
raster.PolylineBresenham(img, image.Black, p.points...)
//drawPoints(img, image.NRGBAColor{0, 0, 0, 0xff}, curve[:]...)
drawPoints(img, color.NRGBA{0, 0, 0, 0xff}, p.points...)
savepng(fmt.Sprintf("_testRec%d.png", i), img)
log.Printf("Num of points: %d\n", len(p.points))
}
fmt.Println()
}
func TestCubicCurve(t *testing.T) {
for i, curve := range testsCubicFloat64 {
var p Path
p.LineTo(curve[0], curve[1])
curve.Segment(&p, flatteningThreshold)
img := image.NewNRGBA(image.Rect(0, 0, 300, 300))
raster.PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, curve[:]...)
raster.PolylineBresenham(img, image.Black, p.points...)
//drawPoints(img, image.NRGBAColor{0, 0, 0, 0xff}, curve[:]...)
drawPoints(img, color.NRGBA{0, 0, 0, 0xff}, p.points...)
savepng(fmt.Sprintf("_test%d.png", i), img)
log.Printf("Num of points: %d\n", len(p.points))
}
fmt.Println()
}
func TestCubicCurveAdaptiveRec(t *testing.T) {
for i, curve := range testsCubicFloat64 {
var p Path
p.LineTo(curve[0], curve[1])
curve.AdaptiveSegmentRec(&p, 1, 0, 0)
img := image.NewNRGBA(image.Rect(0, 0, 300, 300))
raster.PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, curve[:]...)
raster.PolylineBresenham(img, image.Black, p.points...)
//drawPoints(img, image.NRGBAColor{0, 0, 0, 0xff}, curve[:]...)
drawPoints(img, color.NRGBA{0, 0, 0, 0xff}, p.points...)
savepng(fmt.Sprintf("_testAdaptiveRec%d.png", i), img)
log.Printf("Num of points: %d\n", len(p.points))
}
fmt.Println()
}
func TestCubicCurveAdaptive(t *testing.T) {
for i, curve := range testsCubicFloat64 {
var p Path
p.LineTo(curve[0], curve[1])
curve.AdaptiveSegment(&p, 1, 0, 0)
img := image.NewNRGBA(image.Rect(0, 0, 300, 300))
raster.PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, curve[:]...)
raster.PolylineBresenham(img, image.Black, p.points...)
//drawPoints(img, image.NRGBAColor{0, 0, 0, 0xff}, curve[:]...)
drawPoints(img, color.NRGBA{0, 0, 0, 0xff}, p.points...)
savepng(fmt.Sprintf("_testAdaptive%d.png", i), img)
log.Printf("Num of points: %d\n", len(p.points))
}
fmt.Println()
}
func TestCubicCurveParabolic(t *testing.T) {
for i, curve := range testsCubicFloat64 {
var p Path
p.LineTo(curve[0], curve[1])
curve.ParabolicSegment(&p, flatteningThreshold)
img := image.NewNRGBA(image.Rect(0, 0, 300, 300))
raster.PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, curve[:]...)
raster.PolylineBresenham(img, image.Black, p.points...)
//drawPoints(img, image.NRGBAColor{0, 0, 0, 0xff}, curve[:]...)
drawPoints(img, color.NRGBA{0, 0, 0, 0xff}, p.points...)
savepng(fmt.Sprintf("_testParabolic%d.png", i), img)
log.Printf("Num of points: %d\n", len(p.points))
}
fmt.Println()
}
func TestQuadCurve(t *testing.T) {
for i, curve := range testsQuadFloat64 {
var p Path
p.LineTo(curve[0], curve[1])
curve.Segment(&p, flatteningThreshold)
img := image.NewNRGBA(image.Rect(0, 0, 300, 300))
raster.PolylineBresenham(img, color.NRGBA{0xff, 0, 0, 0xff}, curve[:]...)
raster.PolylineBresenham(img, image.Black, p.points...)
//drawPoints(img, image.NRGBAColor{0, 0, 0, 0xff}, curve[:]...)
drawPoints(img, color.NRGBA{0, 0, 0, 0xff}, p.points...)
savepng(fmt.Sprintf("_testQuad%d.png", i), img)
log.Printf("Num of points: %d\n", len(p.points))
}
fmt.Println()
}
func BenchmarkCubicCurveRec(b *testing.B) {
for i := 0; i < b.N; i++ {
for _, curve := range testsCubicFloat64 {
p := Path{make([]float64, 0, 32)}
p.LineTo(curve[0], curve[1])
curve.SegmentRec(&p, flatteningThreshold)
}
}
}
func BenchmarkCubicCurve(b *testing.B) {
for i := 0; i < b.N; i++ {
for _, curve := range testsCubicFloat64 {
p := Path{make([]float64, 0, 32)}
p.LineTo(curve[0], curve[1])
curve.Segment(&p, flatteningThreshold)
}
}
}
func BenchmarkCubicCurveAdaptiveRec(b *testing.B) {
for i := 0; i < b.N; i++ {
for _, curve := range testsCubicFloat64 {
p := Path{make([]float64, 0, 32)}
p.LineTo(curve[0], curve[1])
curve.AdaptiveSegmentRec(&p, 1, 0, 0)
}
}
}
func BenchmarkCubicCurveAdaptive(b *testing.B) {
for i := 0; i < b.N; i++ {
for _, curve := range testsCubicFloat64 {
p := Path{make([]float64, 0, 32)}
p.LineTo(curve[0], curve[1])
curve.AdaptiveSegment(&p, 1, 0, 0)
}
}
}
func BenchmarkCubicCurveParabolic(b *testing.B) {
for i := 0; i < b.N; i++ {
for _, curve := range testsCubicFloat64 {
p := Path{make([]float64, 0, 32)}
p.LineTo(curve[0], curve[1])
curve.ParabolicSegment(&p, flatteningThreshold)
}
}
}
func BenchmarkQuadCurve(b *testing.B) {
for i := 0; i < b.N; i++ {
for _, curve := range testsQuadFloat64 {
p := Path{make([]float64, 0, 32)}
p.LineTo(curve[0], curve[1])
curve.Segment(&p, flatteningThreshold)
}
}
}