draw2d/draw2dbase/curve.go
Laurent Le Goff 7ef94ce784 Merge branch 'master' into Clean-Up
Conflicts:
	arc.go
	curve/curve_test.go
	draw2dgl/gc.go
	draw2dimg/rgba_interpolation.go
	draw2dpdf/gc.go
	draw2dpdf/path_converter.go
	path_adder.go
	path_storage.go
	raster/raster_test.go
	vertex2d.go
2015-08-14 21:40:32 +02:00

161 lines
3.9 KiB
Go

// Copyright 2010 The draw2d Authors. All rights reserved.
// created: 17/05/2011 by Laurent Le Goff
package draw2dbase
import (
"math"
)
const (
// CurveRecursionLimit represents the maximum recursion that is really necessary to subsivide a curve into straight lines
CurveRecursionLimit = 32
)
// Cubic
// x1, y1, cpx1, cpy1, cpx2, cpy2, x2, y2 float64
// SubdivideCubic a Bezier cubic curve in 2 equivalents Bezier cubic curves.
// c1 and c2 parameters are the resulting curves
func SubdivideCubic(c, c1, c2 []float64) {
// First point of c is the first point of c1
c1[0], c1[1] = c[0], c[1]
// Last point of c is the last point of c2
c2[6], c2[7] = c[6], c[7]
// Subdivide segment using midpoints
c1[2] = (c[0] + c[2]) / 2
c1[3] = (c[1] + c[3]) / 2
midX := (c[2] + c[4]) / 2
midY := (c[3] + c[5]) / 2
c2[4] = (c[4] + c[6]) / 2
c2[5] = (c[5] + c[7]) / 2
c1[4] = (c1[2] + midX) / 2
c1[5] = (c1[3] + midY) / 2
c2[2] = (midX + c2[4]) / 2
c2[3] = (midY + c2[5]) / 2
c1[6] = (c1[4] + c2[2]) / 2
c1[7] = (c1[5] + c2[3]) / 2
// Last Point of c1 is equal to the first point of c2
c2[0], c2[1] = c1[6], c1[7]
}
// TraceCubic generate lines subdividing the cubic curve using a Liner
// flattening_threshold helps determines the flattening expectation of the curve
func TraceCubic(t Liner, cubic []float64, flatteningThreshold float64) {
// Allocation curves
var curves [CurveRecursionLimit * 8]float64
copy(curves[0:8], cubic[0:8])
i := 0
// current curve
var c []float64
var dx, dy, d2, d3 float64
for i >= 0 {
c = curves[i*8:]
dx = c[6] - c[0]
dy = c[7] - c[1]
d2 = math.Abs((c[2]-c[6])*dy - (c[3]-c[7])*dx)
d3 = math.Abs((c[4]-c[6])*dy - (c[5]-c[7])*dx)
// if it's flat then trace a line
if (d2+d3)*(d2+d3) < flatteningThreshold*(dx*dx+dy*dy) || i == len(curves)-1 {
t.LineTo(c[6], c[7])
i--
} else {
// second half of bezier go lower onto the stack
SubdivideCubic(c, curves[(i+1)*8:], curves[i*8:])
i++
}
}
}
// Quad
// x1, y1, cpx1, cpy2, x2, y2 float64
// SubdivideQuad a Bezier quad curve in 2 equivalents Bezier quad curves.
// c1 and c2 parameters are the resulting curves
func SubdivideQuad(c, c1, c2 []float64) {
// First point of c is the first point of c1
c1[0], c1[1] = c[0], c[1]
// Last point of c is the last point of c2
c2[4], c2[5] = c[4], c[5]
// Subdivide segment using midpoints
c1[2] = (c[0] + c[2]) / 2
c1[3] = (c[1] + c[3]) / 2
c2[2] = (c[2] + c[4]) / 2
c2[3] = (c[3] + c[5]) / 2
c1[4] = (c1[2] + c2[2]) / 2
c1[5] = (c1[3] + c2[3]) / 2
c2[0], c2[1] = c1[4], c1[5]
return
}
// TraceQuad generate lines subdividing the curve using a Liner
// flattening_threshold helps determines the flattening expectation of the curve
func TraceQuad(t Liner, quad []float64, flatteningThreshold float64) {
// Allocates curves stack
var curves [CurveRecursionLimit * 6]float64
copy(curves[0:6], quad[0:6])
i := 0
// current curve
var c []float64
var dx, dy, d float64
for i >= 0 {
c = curves[i*6:]
dx = c[4] - c[0]
dy = c[5] - c[1]
d = math.Abs(((c[2]-c[4])*dy - (c[3]-c[5])*dx))
// if it's flat then trace a line
if (d*d) < flatteningThreshold*(dx*dx+dy*dy) || i == len(curves)-1 {
t.LineTo(c[4], c[5])
i--
} else {
// second half of bezier go lower onto the stack
SubdivideQuad(c, curves[(i+1)*6:], curves[i*6:])
i++
}
}
}
// TraceArc trace an arc using a Liner
func TraceArc(t Liner, x, y, rx, ry, start, angle, scale float64) (lastX, lastY float64) {
end := start + angle
clockWise := true
if angle < 0 {
clockWise = false
}
ra := (math.Abs(rx) + math.Abs(ry)) / 2
da := math.Acos(ra/(ra+0.125/scale)) * 2
//normalize
if !clockWise {
da = -da
}
angle = start + da
var curX, curY float64
for {
if (angle < end-da/4) != clockWise {
curX = x + math.Cos(end)*rx
curY = y + math.Sin(end)*ry
return curX, curY
}
curX = x + math.Cos(angle)*rx
curY = y + math.Sin(angle)*ry
angle += da
t.LineTo(curX, curY)
}
}