freetype/freetype/truetype/glyph.go

409 lines
11 KiB
Go
Raw Normal View History

// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package truetype
// A Point is a co-ordinate pair plus whether it is ``on'' a contour or an
// ``off'' control point.
type Point struct {
X, Y int32
// The Flags' LSB means whether or not this Point is ``on'' the contour.
// Other bits are reserved for internal use.
Flags uint32
}
// A GlyphBuf holds a glyph's contours. A GlyphBuf can be re-used to load a
// series of glyphs from a Font.
type GlyphBuf struct {
// B is the glyph's bounding box.
B Bounds
// Point contains all Points from all contours of the glyph. If a
// Hinter was used to load a glyph then Unhinted contains those
// Points before they were hinted, and InFontUnits contains those
// Points before they were hinted and scaled.
Point, Unhinted, InFontUnits []Point
// End is the point indexes of the end point of each countour. The
// length of End is the number of contours in the glyph. The i'th
// contour consists of points Point[End[i-1]:End[i]], where End[-1]
// is interpreted to mean zero.
End []int
font *Font
hinter *Hinter
scale int32
// pp1x is the X co-ordinate of the first phantom point.
pp1x int32
// metricsSet is whether the glyph's metrics have been set yet. For a
// compound glyph, a sub-glyph may override the outer glyph's metrics.
metricsSet bool
// tmp is a scratch buffer.
tmp []Point
}
// Flags for decoding a glyph's contours. These flags are documented at
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html.
const (
flagOnCurve = 1 << iota
flagXShortVector
flagYShortVector
flagRepeat
flagPositiveXShortVector
flagPositiveYShortVector
// The remaining flags are for internal use.
flagTouchedX
flagTouchedY
)
// The same flag bits (0x10 and 0x20) are overloaded to have two meanings,
// dependent on the value of the flag{X,Y}ShortVector bits.
const (
flagThisXIsSame = flagPositiveXShortVector
flagThisYIsSame = flagPositiveYShortVector
)
// Load loads a glyph's contours from a Font, overwriting any previously
// loaded contours for this GlyphBuf. scale is the number of 26.6 fixed point
// units in 1 em. The Hinter is optional; if non-nil, then the resulting glyph
// will be hinted by the Font's bytecode instructions.
func (g *GlyphBuf) Load(f *Font, scale int32, i Index, h *Hinter) error {
g.B = Bounds{}
g.Point = g.Point[:0]
g.Unhinted = g.Unhinted[:0]
g.InFontUnits = g.InFontUnits[:0]
g.End = g.End[:0]
g.font = f
g.hinter = h
g.scale = scale
g.pp1x = 0
g.metricsSet = false
if h != nil {
if err := h.init(f, scale); err != nil {
return err
}
}
if err := g.load(0, i, true); err != nil {
return err
}
if g.pp1x != 0 {
for i := range g.Point {
g.Point[i].X -= g.pp1x
}
// TODO: also adjust g.B?
}
return nil
}
func (g *GlyphBuf) load(recursion int32, i Index, useMyMetrics bool) (err error) {
// The recursion limit here is arbitrary, but defends against malformed glyphs.
if recursion >= 32 {
return UnsupportedError("excessive compound glyph recursion")
}
// Find the relevant slice of g.font.glyf.
var g0, g1 uint32
if g.font.locaOffsetFormat == locaOffsetFormatShort {
g0 = 2 * uint32(u16(g.font.loca, 2*int(i)))
g1 = 2 * uint32(u16(g.font.loca, 2*int(i)+2))
} else {
g0 = u32(g.font.loca, 4*int(i))
g1 = u32(g.font.loca, 4*int(i)+4)
}
if g0 == g1 {
return nil
}
glyf := g.font.glyf[g0:g1]
// Decode the contour end indices.
ne := int(int16(u16(glyf, 0)))
b := Bounds{
XMin: int32(int16(u16(glyf, 2))),
YMin: int32(int16(u16(glyf, 4))),
XMax: int32(int16(u16(glyf, 6))),
YMax: int32(int16(u16(glyf, 8))),
}
uhm, pp1x := g.font.unscaledHMetric(i), int32(0)
if ne < 0 {
if ne != -1 {
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html says that
// "the values -2, -3, and so forth, are reserved for future use."
return UnsupportedError("negative number of contours")
}
pp1x = g.font.scale(g.scale * (b.XMin - uhm.LeftSideBearing))
if err := g.loadCompound(recursion, b, uhm, i, glyf, useMyMetrics); err != nil {
return err
}
} else {
np0, ne0 := len(g.Point), len(g.End)
program := g.loadSimple(glyf, ne)
g.addPhantomsAndScale(b, uhm, i, np0, g.hinter != nil)
if g.hinter != nil {
if len(program) != 0 {
err := g.hinter.run(
program,
g.Point[np0:],
g.Unhinted[np0:],
g.InFontUnits[np0:],
g.End[ne0:],
)
if err != nil {
return err
}
}
}
// Drop the four phantom points.
pp1x = g.Point[len(g.Point)-4].X
if g.hinter != nil {
if dx := ((pp1x + 32) &^ 63) - pp1x; dx != 0 {
for i := np0; i < len(g.Point); i++ {
g.Point[i].X += dx
}
pp1x = g.Point[len(g.Point)-4].X
}
g.InFontUnits = g.InFontUnits[:len(g.InFontUnits)-4]
g.Unhinted = g.Unhinted[:len(g.Unhinted)-4]
}
g.Point = g.Point[:len(g.Point)-4]
if np0 != 0 {
// The hinting program expects the []End values to be indexed relative
// to the inner glyph, not the outer glyph, so we delay adding np0 until
// after the hinting program (if any) has run.
for i := ne0; i < len(g.End); i++ {
g.End[i] += np0
}
}
}
if useMyMetrics && !g.metricsSet {
g.metricsSet = true
g.B.XMin = g.font.scale(g.scale * b.XMin)
g.B.YMin = g.font.scale(g.scale * b.YMin)
g.B.XMax = g.font.scale(g.scale * b.XMax)
g.B.YMax = g.font.scale(g.scale * b.YMax)
g.pp1x = pp1x
}
return nil
}
// loadOffset is the initial offset for loadSimple and loadCompound. The first
// 10 bytes are the number of contours and the bounding box.
const loadOffset = 10
func (g *GlyphBuf) loadSimple(glyf []byte, ne int) (program []byte) {
offset := loadOffset
for i := 0; i < ne; i++ {
g.End = append(g.End, 1+int(u16(glyf, offset)))
offset += 2
}
// Note the TrueType hinting instructions.
instrLen := int(u16(glyf, offset))
offset += 2
program = glyf[offset : offset+instrLen]
offset += instrLen
np0 := len(g.Point)
np1 := np0 + int(g.End[len(g.End)-1])
// Decode the flags.
for i := np0; i < np1; {
c := uint32(glyf[offset])
offset++
g.Point = append(g.Point, Point{Flags: c})
i++
if c&flagRepeat != 0 {
count := glyf[offset]
offset++
for ; count > 0; count-- {
g.Point = append(g.Point, Point{Flags: c})
i++
}
}
}
// Decode the co-ordinates.
var x int16
for i := np0; i < np1; i++ {
f := g.Point[i].Flags
if f&flagXShortVector != 0 {
dx := int16(glyf[offset])
offset++
if f&flagPositiveXShortVector == 0 {
x -= dx
} else {
x += dx
}
} else if f&flagThisXIsSame == 0 {
x += int16(u16(glyf, offset))
offset += 2
}
g.Point[i].X = int32(x)
}
var y int16
for i := np0; i < np1; i++ {
f := g.Point[i].Flags
if f&flagYShortVector != 0 {
dy := int16(glyf[offset])
offset++
if f&flagPositiveYShortVector == 0 {
y -= dy
} else {
y += dy
}
} else if f&flagThisYIsSame == 0 {
y += int16(u16(glyf, offset))
offset += 2
}
g.Point[i].Y = int32(y)
}
return program
}
func (g *GlyphBuf) loadCompound(recursion int32, b Bounds, uhm HMetric, i Index,
glyf []byte, useMyMetrics bool) error {
// Flags for decoding a compound glyph. These flags are documented at
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html.
const (
flagArg1And2AreWords = 1 << iota
flagArgsAreXYValues
flagRoundXYToGrid
flagWeHaveAScale
flagUnused
flagMoreComponents
flagWeHaveAnXAndYScale
flagWeHaveATwoByTwo
flagWeHaveInstructions
flagUseMyMetrics
flagOverlapCompound
)
np0, ne0 := len(g.Point), len(g.End)
offset := loadOffset
for {
flags := u16(glyf, offset)
component := Index(u16(glyf, offset+2))
dx, dy, transform, hasTransform := int32(0), int32(0), [4]int32{}, false
if flags&flagArg1And2AreWords != 0 {
dx = int32(int16(u16(glyf, offset+4)))
dy = int32(int16(u16(glyf, offset+6)))
offset += 8
} else {
dx = int32(int16(int8(glyf[offset+4])))
dy = int32(int16(int8(glyf[offset+5])))
offset += 6
}
if flags&flagArgsAreXYValues == 0 {
return UnsupportedError("compound glyph transform vector")
}
if flags&(flagWeHaveAScale|flagWeHaveAnXAndYScale|flagWeHaveATwoByTwo) != 0 {
hasTransform = true
switch {
case flags&flagWeHaveAScale != 0:
transform[0] = int32(int16(u16(glyf, offset+0)))
transform[3] = transform[0]
offset += 2
case flags&flagWeHaveAnXAndYScale != 0:
transform[0] = int32(int16(u16(glyf, offset+0)))
transform[3] = int32(int16(u16(glyf, offset+2)))
offset += 4
case flags&flagWeHaveATwoByTwo != 0:
transform[0] = int32(int16(u16(glyf, offset+0)))
transform[1] = int32(int16(u16(glyf, offset+2)))
transform[2] = int32(int16(u16(glyf, offset+4)))
transform[3] = int32(int16(u16(glyf, offset+6)))
offset += 8
}
}
np0 := len(g.Point)
componentUMM := useMyMetrics && (flags&flagUseMyMetrics != 0)
if err := g.load(recursion+1, component, componentUMM); err != nil {
return err
}
if hasTransform {
for j := np0; j < len(g.Point); j++ {
p := &g.Point[j]
newX := int32((int64(p.X)*int64(transform[0])+1<<13)>>14) +
int32((int64(p.Y)*int64(transform[2])+1<<13)>>14)
newY := int32((int64(p.X)*int64(transform[1])+1<<13)>>14) +
int32((int64(p.Y)*int64(transform[3])+1<<13)>>14)
p.X, p.Y = newX, newY
}
}
dx = g.font.scale(g.scale * dx)
dy = g.font.scale(g.scale * dy)
if flags&flagRoundXYToGrid != 0 {
dx = (dx + 32) &^ 63
dy = (dy + 32) &^ 63
}
for j := np0; j < len(g.Point); j++ {
p := &g.Point[j]
p.X += dx
p.Y += dy
}
// TODO: also adjust g.InFontUnits and g.Unhinted?
if flags&flagMoreComponents == 0 {
break
}
}
// Hint the compound glyph.
if g.hinter == nil || offset+2 > len(glyf) {
return nil
}
instrLen := int(u16(glyf, offset))
offset += 2
if instrLen == 0 {
return nil
}
program := glyf[offset : offset+instrLen]
g.addPhantomsAndScale(b, uhm, i, len(g.Point), false)
points := g.Point[np0:]
g.Point = g.Point[:len(g.Point)-4]
for j := range points {
points[j].Flags &^= flagTouchedX | flagTouchedY
}
// Hinting instructions of a composite glyph completely refer to the
// (already) hinted subglyphs.
g.tmp = append(g.tmp[:0], points...)
return g.hinter.run(program, points, g.tmp, g.tmp, g.End[ne0:])
}
func (g *GlyphBuf) addPhantomsAndScale(b Bounds, uhm HMetric, i Index, np0 int, appendOther bool) {
// Add the four phantom points.
uvm := g.font.unscaledVMetric(i)
g.Point = append(g.Point,
Point{X: b.XMin - uhm.LeftSideBearing},
Point{X: b.XMin - uhm.LeftSideBearing + uhm.AdvanceWidth},
Point{Y: b.YMax + uvm.TopSideBearing},
Point{Y: b.YMax + uvm.TopSideBearing - uvm.AdvanceHeight},
)
// Scale the points.
if appendOther {
g.InFontUnits = append(g.InFontUnits, g.Point[np0:]...)
}
for i := np0; i < len(g.Point); i++ {
p := &g.Point[i]
p.X = g.font.scale(g.scale * p.X)
p.Y = g.font.scale(g.scale * p.Y)
}
if appendOther {
g.Unhinted = append(g.Unhinted, g.Point[np0:]...)
}
// Round the 2nd and 4th phantom point to the grid.
p := &g.Point[len(g.Point)-3]
p.X = (p.X + 32) &^ 63
p = &g.Point[len(g.Point)-1]
p.Y = (p.Y + 32) &^ 63
}
// TODO: is this necessary? The zero-valued GlyphBuf is perfectly usable.
// NewGlyphBuf returns a newly allocated GlyphBuf.
func NewGlyphBuf() *GlyphBuf {
return &GlyphBuf{
Point: make([]Point, 0, 256),
End: make([]int, 0, 32),
}
}