freetype/raster: Implement round joins.
R=r, rsc CC=golang-dev, rog http://codereview.appspot.com/1746043
This commit is contained in:
parent
c95fb230fe
commit
4d90648d2c
2 changed files with 289 additions and 23 deletions
98
example/round/main.go
Normal file
98
example/round/main.go
Normal file
|
@ -0,0 +1,98 @@
|
|||
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by your choice of either the
|
||||
// FreeType License or the GNU General Public License version 2,
|
||||
// both of which can be found in the LICENSE file.
|
||||
|
||||
// This program visualizes the quadratic approximation to the circle, used to
|
||||
// implement round joins when stroking paths. The approximation is used in the
|
||||
// stroking code for arcs between 0 and 45 degrees, but is visualized here
|
||||
// between 0 and 90 degrees. The discrepancy between the approximation and the
|
||||
// true circle is clearly visible at angles above 65 degrees.
|
||||
package main
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"fmt"
|
||||
"image"
|
||||
"image/png"
|
||||
"log"
|
||||
"math"
|
||||
"os"
|
||||
|
||||
"freetype-go.googlecode.com/hg/freetype/raster"
|
||||
)
|
||||
|
||||
func main() {
|
||||
const (
|
||||
n = 17
|
||||
r = 256 * 80
|
||||
)
|
||||
s := raster.Fixed(r * math.Sqrt(2) / 2)
|
||||
t := raster.Fixed(r * math.Tan(math.Pi/8))
|
||||
|
||||
m := image.NewRGBA(800, 600)
|
||||
for y := 0; y < m.Height(); y++ {
|
||||
for x := 0; x < m.Width(); x++ {
|
||||
m.Pixel[y][x] = image.RGBAColor{63, 63, 63, 255}
|
||||
}
|
||||
}
|
||||
mp := raster.NewRGBAPainter(m)
|
||||
mp.SetColor(image.Black)
|
||||
z := raster.NewRasterizer(800, 600)
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
cx := raster.Fixed(25600 + 51200*(i%4))
|
||||
cy := raster.Fixed(2560 + 32000*(i/4))
|
||||
c := raster.Point{cx, cy}
|
||||
theta := math.Pi * (0.5 + 0.5*float64(i)/(n-1))
|
||||
dx := raster.Fixed(r * math.Cos(theta))
|
||||
dy := raster.Fixed(r * math.Sin(theta))
|
||||
d := raster.Point{dx, dy}
|
||||
// Draw a quarter-circle approximated by two quadratic segments,
|
||||
// with each segment spanning 45 degrees.
|
||||
z.Start(c)
|
||||
z.Add1(c.Add(raster.Point{r, 0}))
|
||||
z.Add2(c.Add(raster.Point{r, t}), c.Add(raster.Point{s, s}))
|
||||
z.Add2(c.Add(raster.Point{t, r}), c.Add(raster.Point{0, r}))
|
||||
// Add another quadratic segment whose angle ranges between 0 and 90 degrees.
|
||||
// For an explanation of the magic constants 22, 150, 181 and 256, read the
|
||||
// comments in the freetype/raster package.
|
||||
dot := 256 * d.Dot(raster.Point{0, r}) / (r * r)
|
||||
multiple := raster.Fixed(150 - 22*(dot-181)/(256-181))
|
||||
z.Add2(c.Add(raster.Point{dx, r + dy}.Mul(multiple)), c.Add(d))
|
||||
// Close the curve.
|
||||
z.Add1(c)
|
||||
}
|
||||
z.Rasterize(mp)
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
cx := raster.Fixed(25600 + 51200*(i%4))
|
||||
cy := raster.Fixed(2560 + 32000*(i/4))
|
||||
for j := 0; j < n; j++ {
|
||||
theta := math.Pi * float64(j) / (n - 1)
|
||||
dx := raster.Fixed(r * math.Cos(theta))
|
||||
dy := raster.Fixed(r * math.Sin(theta))
|
||||
m.Set(int((cx+dx)/256), int((cy+dy)/256), image.Yellow)
|
||||
}
|
||||
}
|
||||
|
||||
// Save that RGBA image to disk.
|
||||
f, err := os.Open("out.png", os.O_CREAT|os.O_WRONLY, 0600)
|
||||
if err != nil {
|
||||
log.Stderr(err)
|
||||
os.Exit(1)
|
||||
}
|
||||
defer f.Close()
|
||||
b := bufio.NewWriter(f)
|
||||
err = png.Encode(b, m)
|
||||
if err != nil {
|
||||
log.Stderr(err)
|
||||
os.Exit(1)
|
||||
}
|
||||
err = b.Flush()
|
||||
if err != nil {
|
||||
log.Stderr(err)
|
||||
os.Exit(1)
|
||||
}
|
||||
fmt.Println("Wrote out.png OK.")
|
||||
}
|
|
@ -13,6 +13,9 @@ import (
|
|||
// A Fixed is a 24.8 fixed point number.
|
||||
type Fixed int32
|
||||
|
||||
// A Fixed64 is a 48.16 fixed point number.
|
||||
type Fixed64 int64
|
||||
|
||||
// String returns a human-readable representation of a 24.8 fixed point number.
|
||||
// For example, the number one-and-a-quarter becomes "1:064".
|
||||
func (x Fixed) String() string {
|
||||
|
@ -23,6 +26,16 @@ func (x Fixed) String() string {
|
|||
return fmt.Sprintf("%d:%03d", int32(i), int32(f))
|
||||
}
|
||||
|
||||
// String returns a human-readable representation of a 48.16 fixed point number.
|
||||
// For example, the number one-and-a-quarter becomes "1:00064".
|
||||
func (x Fixed64) String() string {
|
||||
i, f := x/65536, x%65536
|
||||
if f < 0 {
|
||||
f = -f
|
||||
}
|
||||
return fmt.Sprintf("%d:%05d", int64(i), int64(f))
|
||||
}
|
||||
|
||||
// maxAbs returns the maximum of abs(a) and abs(b).
|
||||
func maxAbs(a, b Fixed) Fixed {
|
||||
if a < 0 {
|
||||
|
@ -58,6 +71,18 @@ func (p Point) Mul(k Fixed) Point {
|
|||
return Point{p.X * k / 256, p.Y * k / 256}
|
||||
}
|
||||
|
||||
// Neg returns the vector -p, or equivalently p rotated by 180 degrees.
|
||||
func (p Point) Neg() Point {
|
||||
return Point{-p.X, -p.Y}
|
||||
}
|
||||
|
||||
// Dot returns the dot product p·q.
|
||||
func (p Point) Dot(q Point) Fixed64 {
|
||||
px, py := int64(p.X), int64(p.Y)
|
||||
qx, qy := int64(q.X), int64(q.Y)
|
||||
return Fixed64(px*qx + py*qy)
|
||||
}
|
||||
|
||||
// Len returns the length of the vector p.
|
||||
func (p Point) Len() Fixed {
|
||||
// TODO(nigeltao): use fixed point math.
|
||||
|
@ -73,22 +98,64 @@ func (p Point) Norm(length Fixed) Point {
|
|||
if d == 0 {
|
||||
return Point{0, 0}
|
||||
}
|
||||
// TODO(nigeltao): should we check for overflow?
|
||||
return Point{p.X * length / d, p.Y * length / d}
|
||||
s, t := int64(length), int64(d)
|
||||
x := int64(p.X) * s / t
|
||||
y := int64(p.Y) * s / t
|
||||
return Point{Fixed(x), Fixed(y)}
|
||||
}
|
||||
|
||||
// RotateCW returns the vector p rotated clockwise by 90 degrees.
|
||||
// Note that the Y-axis grows downwards, so {1, 0}.RotateCW is {0, 1}.
|
||||
func (p Point) RotateCW() Point {
|
||||
// Rot45CW returns the vector p rotated clockwise by 45 degrees.
|
||||
// Note that the Y-axis grows downwards, so {1, 0}.Rot45CW is {1/√2, 1/√2}.
|
||||
func (p Point) Rot45CW() Point {
|
||||
// 181/256 is approximately 1/√2, or sin(π/4).
|
||||
px, py := int64(p.X), int64(p.Y)
|
||||
qx := (+px - py) * 181 / 256
|
||||
qy := (+px + py) * 181 / 256
|
||||
return Point{Fixed(qx), Fixed(qy)}
|
||||
}
|
||||
|
||||
// Rot90CW returns the vector p rotated clockwise by 90 degrees.
|
||||
// Note that the Y-axis grows downwards, so {1, 0}.Rot90CW is {0, 1}.
|
||||
func (p Point) Rot90CW() Point {
|
||||
return Point{-p.Y, p.X}
|
||||
}
|
||||
|
||||
// RotateCCW returns the vector p rotated counter-clockwise by 90 degrees.
|
||||
// Note that the Y-axis grows downwards, so {1, 0}.RotateCCW is {0, -1}.
|
||||
func (p Point) RotateCCW() Point {
|
||||
// Rot135CW returns the vector p rotated clockwise by 135 degrees.
|
||||
// Note that the Y-axis grows downwards, so {1, 0}.Rot135CW is {-1/√2, 1/√2}.
|
||||
func (p Point) Rot135CW() Point {
|
||||
// 181/256 is approximately 1/√2, or sin(π/4).
|
||||
px, py := int64(p.X), int64(p.Y)
|
||||
qx := (-px - py) * 181 / 256
|
||||
qy := (+px - py) * 181 / 256
|
||||
return Point{Fixed(qx), Fixed(qy)}
|
||||
}
|
||||
|
||||
// Rot45CCW returns the vector p rotated counter-clockwise by 45 degrees.
|
||||
// Note that the Y-axis grows downwards, so {1, 0}.Rot45CCW is {1/√2, -1/√2}.
|
||||
func (p Point) Rot45CCW() Point {
|
||||
// 181/256 is approximately 1/√2, or sin(π/4).
|
||||
px, py := int64(p.X), int64(p.Y)
|
||||
qx := (+px + py) * 181 / 256
|
||||
qy := (-px + py) * 181 / 256
|
||||
return Point{Fixed(qx), Fixed(qy)}
|
||||
}
|
||||
|
||||
// Rot90CCW returns the vector p rotated counter-clockwise by 90 degrees.
|
||||
// Note that the Y-axis grows downwards, so {1, 0}.Rot90CCW is {0, -1}.
|
||||
func (p Point) Rot90CCW() Point {
|
||||
return Point{p.Y, -p.X}
|
||||
}
|
||||
|
||||
// Rot135CCW returns the vector p rotated counter-clockwise by 135 degrees.
|
||||
// Note that the Y-axis grows downwards, so {1, 0}.Rot135CCW is {-1/√2, -1/√2}.
|
||||
func (p Point) Rot135CCW() Point {
|
||||
// 181/256 is approximately 1/√2, or sin(π/4).
|
||||
px, py := int64(p.X), int64(p.Y)
|
||||
qx := (-px + py) * 181 / 256
|
||||
qy := (-px - py) * 181 / 256
|
||||
return Point{Fixed(qx), Fixed(qy)}
|
||||
}
|
||||
|
||||
// An Adder accumulates points on a curve.
|
||||
type Adder interface {
|
||||
// Start starts a new curve at the given point.
|
||||
|
@ -258,10 +325,10 @@ func addCap(p Adder, cap Cap, center, end Point) {
|
|||
switch cap {
|
||||
case RoundCap:
|
||||
// The cubic Bézier approximation to a circle involves the magic number
|
||||
// (sqrt(2) - 1) * 4/3, which is approximately 141 / 256.
|
||||
// (√2 - 1) * 4/3, which is approximately 141/256.
|
||||
const k = 141
|
||||
d := end.Sub(center)
|
||||
e := d.RotateCCW()
|
||||
e := d.Rot90CCW()
|
||||
side := center.Add(e)
|
||||
start := center.Sub(d)
|
||||
d, e = d.Mul(k), e.Mul(k)
|
||||
|
@ -271,7 +338,7 @@ func addCap(p Adder, cap Cap, center, end Point) {
|
|||
p.Add1(end)
|
||||
case SquareCap:
|
||||
d := end.Sub(center)
|
||||
e := d.RotateCCW()
|
||||
e := d.Rot90CCW()
|
||||
side := center.Add(e)
|
||||
p.Add1(side.Sub(d))
|
||||
p.Add1(side.Add(d))
|
||||
|
@ -279,6 +346,110 @@ func addCap(p Adder, cap Cap, center, end Point) {
|
|||
}
|
||||
}
|
||||
|
||||
func addJoin(lhs, rhs Adder, join Join, a, anorm, bnorm Point) {
|
||||
switch join {
|
||||
case RoundJoin:
|
||||
dot := anorm.Rot90CW().Dot(bnorm)
|
||||
if dot >= 0 {
|
||||
addArc(lhs, a, anorm, bnorm)
|
||||
rhs.Add1(a.Sub(bnorm))
|
||||
} else {
|
||||
lhs.Add1(a.Add(bnorm))
|
||||
addArc(rhs, a, anorm.Neg(), bnorm.Neg())
|
||||
}
|
||||
case BevelJoin:
|
||||
lhs.Add1(a.Add(bnorm))
|
||||
rhs.Add1(a.Sub(bnorm))
|
||||
case MiterJoin:
|
||||
panic("freetype/raster: miter join unimplemented")
|
||||
}
|
||||
}
|
||||
|
||||
// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
|
||||
// the two possible arcs is taken, i.e. the one spanning <= 180 degrees.
|
||||
// The two vectors n0 and n1 must be of equal length.
|
||||
func addArc(p Adder, pivot, n0, n1 Point) {
|
||||
// r2 is the square of the length of n0.
|
||||
r2 := n0.Dot(n0)
|
||||
if r2 < 4096 {
|
||||
// The arc radius is so small that we collapse to a straight line.
|
||||
p.Add1(pivot.Add(n1))
|
||||
return
|
||||
}
|
||||
// We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
|
||||
// a final quadratic segment from s to n1. Each 45-degree segment has control
|
||||
// points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled, rotated and
|
||||
// translated. tan(π/8) is approximately 106/256.
|
||||
const t = 106
|
||||
var s Point
|
||||
// We determine which octant the angle between n0 and n1 is in via three dot products.
|
||||
// m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135 degrees.
|
||||
m0 := n0.Rot45CW()
|
||||
m1 := n0.Rot90CW()
|
||||
m2 := m0.Rot90CW()
|
||||
if m1.Dot(n1) >= 0 {
|
||||
if n0.Dot(n1) >= 0 {
|
||||
if m2.Dot(n1) <= 0 {
|
||||
// n1 is between 0 and 45 degrees clockwise of n0.
|
||||
s = n0
|
||||
} else {
|
||||
// n1 is between 45 and 90 degrees clockwise of n0.
|
||||
p.Add2(pivot.Add(n0).Add(m1.Mul(t)), pivot.Add(m0))
|
||||
s = m0
|
||||
}
|
||||
} else {
|
||||
pm1, n0t := pivot.Add(m1), n0.Mul(t)
|
||||
p.Add2(pivot.Add(n0).Add(m1.Mul(t)), pivot.Add(m0))
|
||||
p.Add2(pm1.Add(n0t), pm1)
|
||||
if m0.Dot(n1) >= 0 {
|
||||
// n1 is between 90 and 135 degrees clockwise of n0.
|
||||
s = m1
|
||||
} else {
|
||||
// n1 is between 135 and 180 degrees clockwise of n0.
|
||||
p.Add2(pm1.Sub(n0t), pivot.Add(m2))
|
||||
s = m2
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if n0.Dot(n1) >= 0 {
|
||||
if m0.Dot(n1) >= 0 {
|
||||
// n1 is between 0 and 45 degrees counter-clockwise of n0.
|
||||
s = n0
|
||||
} else {
|
||||
// n1 is between 45 and 90 degrees counter-clockwise of n0.
|
||||
p.Add2(pivot.Add(n0).Sub(m1.Mul(t)), pivot.Sub(m2))
|
||||
s = m2.Neg()
|
||||
}
|
||||
} else {
|
||||
pm1, n0t := pivot.Sub(m1), n0.Mul(t)
|
||||
p.Add2(pivot.Add(n0).Sub(m1.Mul(t)), pivot.Sub(m2))
|
||||
p.Add2(pm1.Add(n0t), pm1)
|
||||
if m2.Dot(n1) <= 0 {
|
||||
// n1 is between 90 and 135 degrees counter-clockwise of n0.
|
||||
s = m1.Neg()
|
||||
} else {
|
||||
// n1 is between 135 and 180 degrees counter-clockwise of n0.
|
||||
p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
|
||||
s = m0.Neg()
|
||||
}
|
||||
}
|
||||
}
|
||||
// The final quadratic segment has two endpoints s and n1 and the middle
|
||||
// control point is a multiple of s.Add(n1), i.e. it is on the angle bisector
|
||||
// of those two points. The multiple ranges between 128/256 and 150/256 as
|
||||
// the angle between s and n1 ranges between 0 and 45 degrees.
|
||||
// When the angle is 0 degrees (i.e. s and n1 are coincident) then s.Add(n1)
|
||||
// is twice s and so the middle control point of the degenerate quadratic
|
||||
// segment should be half s.Add(n1), and half = 128/256.
|
||||
// When the angle is 45 degrees then 150/256 is the ratio of the lengths of
|
||||
// the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
|
||||
// d is the normalized dot product between s and n1. Since the angle ranges
|
||||
// between 0 and 45 degrees then d ranges between 256/256 and 181/256.
|
||||
d := 256 * s.Dot(n1) / r2
|
||||
multiple := Fixed(150 - 22*(d-181)/(256-181))
|
||||
p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
|
||||
}
|
||||
|
||||
// stroke adds the stroked Path q to p, where q consists of exactly one curve.
|
||||
func stroke(p Adder, q Path, width Fixed, cap Cap, join Join) {
|
||||
// Stroking is implemented by deriving two paths each width/2 apart from q.
|
||||
|
@ -286,27 +457,24 @@ func stroke(p Adder, q Path, width Fixed, cap Cap, join Join) {
|
|||
// path is accumulated in r, and once we've finished adding the LHS to p
|
||||
// we add the RHS in reverse order.
|
||||
r := Path(make([]Fixed, 0, len(q)))
|
||||
var start Point
|
||||
var start, anorm Point
|
||||
a := Point{q[1], q[2]}
|
||||
i := 4
|
||||
for i < len(q) {
|
||||
switch q[i] {
|
||||
case 1:
|
||||
bx, by := q[i+1], q[i+2]
|
||||
delta := Point{bx - a.X, by - a.Y}
|
||||
normal := delta.Norm(width / 2).RotateCCW()
|
||||
b := Point{q[i+1], q[i+2]}
|
||||
bnorm := b.Sub(a).Norm(width / 2).Rot90CCW()
|
||||
if i == 4 {
|
||||
start = Point{a.X + normal.X, a.Y + normal.Y}
|
||||
start = a.Add(bnorm)
|
||||
p.Start(start)
|
||||
r.Start(Point{a.X - normal.X, a.Y - normal.Y})
|
||||
r.Start(a.Sub(bnorm))
|
||||
} else {
|
||||
// TODO(nigeltao): handle joins.
|
||||
p.Add1(Point{a.X + normal.X, a.Y + normal.Y})
|
||||
r.Add1(Point{a.X - normal.X, a.Y - normal.Y})
|
||||
addJoin(p, &r, join, a, anorm, bnorm)
|
||||
}
|
||||
p.Add1(Point{bx + normal.X, by + normal.Y})
|
||||
r.Add1(Point{bx - normal.X, by - normal.Y})
|
||||
a = Point{q[i+1], q[i+2]}
|
||||
p.Add1(b.Add(bnorm))
|
||||
r.Add1(b.Sub(bnorm))
|
||||
a, anorm = b, bnorm
|
||||
i += 4
|
||||
case 2:
|
||||
panic("freetype/raster: stroke unimplemented for quadratic segments")
|
||||
|
|
Loading…
Reference in a new issue