Card now has flexible input from encoded formats. Data mining code updated.

Unfortunately, python does not do import in a nice way without using the
full bore module system, I'll deal with that another day.
This commit is contained in:
Bill Zorn 2015-07-14 23:27:21 -07:00
parent 31877972c2
commit 40fc695826
4 changed files with 492 additions and 409 deletions

View File

@ -1,395 +0,0 @@
import re
import codecs
import sys
import random
import lib.utils as utils
from lib.card import Card
from lib.mana import Manacost
# Format a list of rows of data into nice columns.
# Note that it's the columns that are nice, not this code.
def padrows(l):
# get length for each field
lens = []
for ll in l:
for i, field in enumerate(ll):
if i < len(lens):
lens[i] = max(len(str(field)), lens[i])
else:
lens += [len(str(field))]
# now pad out to that length
padded = []
for ll in l:
padded += ['']
for i, field in enumerate(ll):
s = str(field)
pad = ' ' * (lens[i] - len(s))
padded[-1] += (s + pad + ' ')
return padded
def printrows(l):
for row in l:
print row
# global card pools
unparsed_cards = []
invalid_cards = []
cards = []
allcards = []
# global indices
by_name = {}
by_type = {}
by_type_inclusive = {}
by_supertype = {}
by_supertype_inclusive = {}
by_subtype = {}
by_subtype_inclusive = {}
by_color = {}
by_color_inclusive = {}
by_color_count = {}
by_cmc = {}
by_cost = {}
by_power = {}
by_toughness = {}
by_pt = {}
by_loyalty = {}
by_textlines = {}
by_textlen = {}
indices = {
'by_name' : by_name,
'by_type' : by_type,
'by_type_inclusive' : by_type_inclusive,
'by_supertype' : by_supertype,
'by_supertype_inclusive' : by_supertype_inclusive,
'by_subtype' : by_subtype,
'by_subtype_inclusive' : by_subtype_inclusive,
'by_color' : by_color,
'by_color_inclusive' : by_color_inclusive,
'by_color_count' : by_color_count,
'by_cmc' : by_cmc,
'by_cost' : by_cost,
'by_power' : by_power,
'by_toughness' : by_toughness,
'by_pt' : by_pt,
'by_loyalty' : by_loyalty,
'by_textlines' : by_textlines,
'by_textlen' : by_textlen,
}
def index_size(d):
return sum(map(lambda k: len(d[k]), d))
def inc(d, k, obj):
if k or k == 0:
if k in d:
d[k] += obj
else:
d[k] = obj
# build the global indices
def analyze(cardtexts):
global unparsed_cards, invalid_cards, cards, allcards
for cardtext in cardtexts:
# the empty card is not interesting
if not cardtext:
continue
card = Card(cardtext)
if card._valid:
cards += [card]
allcards += [card]
elif card._parsed:
invalid_cards += [card]
allcards += [card]
else:
unparsed_cards += [card]
if card._parsed:
inc(by_name, card.name, [card])
inc(by_type, ' '.join(card.types), [card])
for t in card.types:
inc(by_type_inclusive, t, [card])
inc(by_supertype, ' '.join(card.supertypes), [card])
for t in card.supertypes:
inc(by_supertype_inclusive, t, [card])
inc(by_subtype, ' '.join(card.subtypes), [card])
for t in card.subtypes:
inc(by_subtype_inclusive, t, [card])
if card.cost.colors:
inc(by_color, card.cost.colors, [card])
for c in card.cost.colors:
inc(by_color_inclusive, c, [card])
inc(by_color_count, len(card.cost.colors), [card])
else:
# colorless, still want to include in these tables
inc(by_color, 'A', [card])
inc(by_color_inclusive, 'A', [card])
inc(by_color_count, 0, [card])
inc(by_cmc, card.cost.cmc, [card])
inc(by_cost, card.cost.reencode() if card.cost.reencode() else 'none', [card])
inc(by_power, card.power, [card])
inc(by_toughness, card.toughness, [card])
inc(by_pt, card.pt, [card])
inc(by_loyalty, card.loyalty, [card])
inc(by_textlines, len(card.text_lines), [card])
inc(by_textlen, len(card.text), [card])
# summarize the indices
# Yes, this printing code is pretty terrible.
def summarize(hsize = 10, vsize = 10, cmcsize = 20):
print '===================='
print str(len(cards)) + ' valid cards, ' + str(len(invalid_cards)) + ' invalid cards.'
print str(len(allcards)) + ' cards parsed, ' + str(len(unparsed_cards)) + ' failed to parse'
print '--------------------'
print str(len(by_name)) + ' unique card names'
print '--------------------'
print (str(len(by_color_inclusive)) + ' represented colors (including colorless as \'A\'), '
+ str(len(by_color)) + ' combinations')
print 'Breakdown by color:'
rows = [by_color_inclusive.keys()]
rows += [[len(by_color_inclusive[k]) for k in rows[0]]]
printrows(padrows(rows))
print 'Breakdown by number of colors:'
rows = [by_color_count.keys()]
rows += [[len(by_color_count[k]) for k in rows[0]]]
printrows(padrows(rows))
print '--------------------'
print str(len(by_type_inclusive)) + ' unique card types, ' + str(len(by_type)) + ' combinations'
print 'Breakdown by type:'
d = sorted(by_type_inclusive,
lambda x,y: cmp(len(by_type_inclusive[x]), len(by_type_inclusive[y])),
reverse = True)
rows = [[k for k in d[:hsize]]]
rows += [[len(by_type_inclusive[k]) for k in rows[0]]]
printrows(padrows(rows))
print '--------------------'
print (str(len(by_subtype_inclusive)) + ' unique subtypes, '
+ str(len(by_subtype)) + ' combinations')
print '-- Popular subtypes: --'
d = sorted(by_subtype_inclusive,
lambda x,y: cmp(len(by_subtype_inclusive[x]), len(by_subtype_inclusive[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
rows += [[k, len(by_subtype_inclusive[k])]]
printrows(padrows(rows))
print '-- Top combinations: --'
d = sorted(by_subtype,
lambda x,y: cmp(len(by_subtype[x]), len(by_subtype[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
rows += [[k, len(by_subtype[k])]]
printrows(padrows(rows))
print '--------------------'
print (str(len(by_supertype_inclusive)) + ' unique supertypes, '
+ str(len(by_supertype)) + ' combinations')
print 'Breakdown by supertype:'
d = sorted(by_supertype_inclusive,
lambda x,y: cmp(len(by_supertype_inclusive[x]),len(by_supertype_inclusive[y])),
reverse = True)
rows = [[k for k in d[:hsize]]]
rows += [[len(by_supertype_inclusive[k]) for k in rows[0]]]
printrows(padrows(rows))
print '--------------------'
print str(len(by_cmc)) + ' different CMCs, ' + str(len(by_cost)) + ' unique mana costs'
print 'Breakdown by CMC:'
d = sorted(by_cmc, reverse = False)
rows = [[k for k in d[:cmcsize]]]
rows += [[len(by_cmc[k]) for k in rows[0]]]
printrows(padrows(rows))
print '-- Popular mana costs: --'
d = sorted(by_cost,
lambda x,y: cmp(len(by_cost[x]), len(by_cost[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
rows += [[utils.from_mana(k), len(by_cost[k])]]
printrows(padrows(rows))
print '--------------------'
print str(len(by_pt)) + ' unique p/t combinations'
print ('Largest power: ' + str(max(map(len, by_power)) - 1) +
', largest toughness: ' + str(max(map(len, by_toughness)) - 1))
print '-- Popular p/t values: --'
d = sorted(by_pt,
lambda x,y: cmp(len(by_pt[x]), len(by_pt[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
rows += [[utils.from_unary(k), len(by_pt[k])]]
printrows(padrows(rows))
print '--------------------'
print 'Loyalty values:'
d = sorted(by_loyalty,
lambda x,y: cmp(len(by_loyalty[x]), len(by_loyalty[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
rows += [[utils.from_unary(k), len(by_loyalty[k])]]
printrows(padrows(rows))
print '--------------------'
print('Card text ranges from ' + str(min(by_textlen)) + ' to '
+ str(max(by_textlen)) + ' characters in length')
print('Card text ranges from ' + str(min(by_textlines)) + ' to '
+ str(max(by_textlines)) + ' lines')
print '-- Line counts by frequency: --'
d = sorted(by_textlines,
lambda x,y: cmp(len(by_textlines[x]), len(by_textlines[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
rows += [[k, len(by_textlines[k])]]
printrows(padrows(rows))
print '===================='
# describe outliers in the indices
def outliers(hsize = 10, vsize = 10, dump_invalid = False):
print '********************'
print 'Overview of indices:'
rows = [['Index Name', 'Keys', 'Total Members']]
for index in indices:
rows += [[index, len(indices[index]), index_size(indices[index])]]
printrows(padrows(rows))
print '********************'
if len(by_name) > 0:
scardname = sorted(by_name,
lambda x,y: cmp(len(x), len(y)),
reverse = False)[0]
print 'Shortest Cardname: (' + str(len(scardname)) + ')'
print ' ' + scardname
lcardname = sorted(by_name,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Longest Cardname: (' + str(len(lcardname)) + ')'
print ' ' + lcardname
d = sorted(by_name,
lambda x,y: cmp(len(by_name[x]), len(by_name[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
if len(by_name[k]) > 1:
rows += [[k, len(by_name[k])]]
if rows == []:
print('No duplicated cardnames')
else:
print '-- Most duplicated names: --'
printrows(padrows(rows))
else:
print 'No cards indexed by name?'
print '--------------------'
if len(by_type) > 0:
ltypes = sorted(by_type,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Longest card type: (' + str(len(ltypes)) + ')'
print ' ' + ltypes
else:
print 'No cards indexed by type?'
if len(by_subtype) > 0:
lsubtypes = sorted(by_subtype,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Longest subtype: (' + str(len(lsubtypes)) + ')'
print ' ' + lsubtypes
else:
print 'No cards indexed by subtype?'
if len(by_supertype) > 0:
lsupertypes = sorted(by_supertype,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Longest supertype: (' + str(len(lsupertypes)) + ')'
print ' ' + lsupertypes
else:
print 'No cards indexed by supertype?'
print '--------------------'
if len(by_cost) > 0:
lcost = sorted(by_cost,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Longest mana cost: (' + str(len(lcost)) + ')'
print ' ' + utils.from_mana(lcost)
print '\n' + by_cost[lcost][0].reencode() + '\n'
else:
print 'No cards indexed by cost?'
if len(by_cmc) > 0:
lcmc = sorted(by_cmc, reverse = True)[0]
print 'Largest cmc: (' + str(lcmc) + ')'
print ' ' + str(by_cmc[lcmc][0].cost)
print '\n' + by_cmc[lcmc][0].reencode()
else:
print 'No cards indexed by cmc?'
print '--------------------'
if len(by_power) > 0:
lpower = sorted(by_power,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Largest creature power: ' + utils.from_unary(lpower)
print '\n' + by_power[lpower][0].reencode() + '\n'
else:
print 'No cards indexed by power?'
if len(by_toughness) > 0:
ltoughness = sorted(by_toughness,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Largest creature toughness: ' + utils.from_unary(ltoughness)
print '\n' + by_toughness[ltoughness][0].reencode()
else:
print 'No cards indexed by toughness?'
print '--------------------'
if len(by_textlines) > 0:
llines = sorted(by_textlines, reverse = True)[0]
print 'Most lines of text in a card: ' + str(llines)
print '\n' + by_textlines[llines][0].reencode() + '\n'
else:
print 'No cards indexed by line count?'
if len(by_textlen) > 0:
ltext = sorted(by_textlen, reverse = True)[0]
print 'Most chars in a card text: ' + str(ltext)
print '\n' + by_textlen[ltext][0].reencode()
else:
print 'No cards indexed by char count?'
print '--------------------'
print 'There were ' + str(len(invalid_cards)) + ' invalid cards.'
if dump_invalid:
for card in invalid_cards:
print '\n' + card.raw
elif len(invalid_cards) > 0:
print 'Not summarizing.'
print '--------------------'
print 'There were ' + str(len(unparsed_cards)) + ' unparsed cards.'
if dump_invalid:
for card in unparsed_cards:
print '\n' + card.raw
elif len(unparsed_cards) > 0:
print 'Not summarizing.'
print '===================='
def main(fname, oname = None, verbose = False):
if verbose:
print 'Opening encoded card file: ' + fname
with open(fname, 'rt') as f:
text = f.read()
cardtexts = text.split(utils.cardsep)
analyze(cardtexts)
summarize()
outliers(dump_invalid = False)
if __name__ == '__main__':
import sys
if len(sys.argv) == 2:
main(sys.argv[1])
elif len(sys.argv) == 3:
main(sys.argv[1], oname = sys.argv[2])
else:
print 'Usage: ' + sys.argv[0] + ' ' + '<encoded file> [output filename]'
exit(1)

View File

@ -202,9 +202,74 @@ def fields_from_json(src_json):
# we don't need to worry about bsides because we handle that in the constructor
return parsed, valid and fields_check_valid(fields), fields
def fields_from_format(src_text, fmt_ordered, fmt_labeled, fieldsep):
pass
def fields_from_format(src_text, fmt_ordered, fmt_labeled, fieldsep):
parsed = True
valid = True
fields = {}
if fmt_labeled:
labels = {fmt_labeled[k] : k for k in fmt_labeled}
field_label_regex = '[' + ''.join(labels.keys()) + ']'
def addf(fields, fkey, fval):
if fkey in fields:
fields[fkey] += [fval]
else:
fields[fkey] = [fval]
textfields = src_text.split(fieldsep)
idx = 0
true_idx = 0
for textfield in textfields:
# ignore leading or trailing empty fields due to seps
if textfield == '':
if true_idx == 0 or true_idx == len(textfields) - 1:
true_idx += 1
continue
# count the field index for other empty fields but don't add them
else:
idx += 1
true_idx += 1
continue
lab = None
if fmt_labeled:
labs = re.findall(field_label_regex, textfield)
# use the first label if we saw any at all
if len(labs) > 0:
lab = labs[0]
# try to use the field label if we got one
if lab and lab in labels:
fname = labels[lab]
# fall back to the field order specified
elif idx < len(fmt_ordered):
fname = fmt_ordered[idx]
# we don't know what to do with this field: call it other
else:
fname = field_other
parsed = False
valid = False
# specialized handling
if fname in [field_cost]:
fval = Manacost(textfield)
parsed = parsed and fval.parsed
valid = valid and fval.valid
addf(fields, fname, (idx, fval))
elif fname in [field_text]:
fval = Manatext(textfield)
valid = valid and fval.valid
addf(fields, fname, (idx, fval))
elif fname in [field_supertypes, field_types, field_subtypes]:
addf(fields, fname, (idx, textfield.split()))
else:
addf(fields, fname, (idx, textfield))
idx += 1
true_idx += 1
# again, bsides are handled by the constructor
return parsed, valid and fields_check_valid(fields), fields
# Here's the actual Card class that other files should use.
@ -272,8 +337,8 @@ class Card:
if self.fields:
for field in self.fields:
# look for a specialized set function
if '_set_' + field in self.__dict__:
self.__dict__['_set_' + field](self.fields[field])
if hasattr(self, '_set_' + field):
getattr(self, '_set_' + field)(self.fields[field])
# otherwise use the default one
elif field in self.__dict__:
self.set_field_default(field, self.fields[field])
@ -330,16 +395,16 @@ class Card:
break # only use the first one...
def _set_text(self, values):
mtext = ''
for idx, value in values:
mtext = value
self.__dict__[field_text] = mtext
fulltext = mtext.encode()
if fulltext:
self.__dict__[field_text + '_lines'] = map(Manatext, fulltext.split(utils.newline))
self.__dict__[field_text + '_words'] = re.sub(utils.unletters_regex,
' ',
fulltext).split()
self.__dict__[field_text] = mtext
fulltext = mtext.encode()
if fulltext:
self.__dict__[field_text + '_lines'] = map(Manatext, fulltext.split(utils.newline))
self.__dict__[field_text + '_words'] = re.sub(utils.unletters_regex,
' ',
fulltext).split()
break # only use the first one...
def _set_other(self, values):
# just record these, we could do somthing unset valid if we really wanted
@ -358,8 +423,8 @@ class Card:
for field in fmt_ordered:
if field in self.__dict__:
if self.__dict__[field]:
outfield = self.__dict__[field]
outfield = self.__dict__[field]
if outfield:
# specialized field handling for the ones that aren't strings (sigh)
if isinstance(outfield, list):
outfield_str = ' '.join(outfield)

380
lib/datalib.py Normal file
View File

@ -0,0 +1,380 @@
import re
import sys
import utils
from cardlib import Card
# Format a list of rows of data into nice columns.
# Note that it's the columns that are nice, not this code.
def padrows(l):
# get length for each field
lens = []
for ll in l:
for i, field in enumerate(ll):
if i < len(lens):
lens[i] = max(len(str(field)), lens[i])
else:
lens += [len(str(field))]
# now pad out to that length
padded = []
for ll in l:
padded += ['']
for i, field in enumerate(ll):
s = str(field)
pad = ' ' * (lens[i] - len(s))
padded[-1] += (s + pad + ' ')
return padded
def printrows(l):
for row in l:
print row
# index management helpers
def index_size(d):
return sum(map(lambda k: len(d[k]), d))
def inc(d, k, obj):
if k or k == 0:
if k in d:
d[k] += obj
else:
d[k] = obj
# thanks gleemax
def plimit(s, mlen = 1000):
if len(s) > mlen:
return s[:1000] + '[...]'
else:
return s
class Datamine:
# build the global indices
def __init__(self, card_srcs):
# global card pools
self.unparsed_cards = []
self.invalid_cards = []
self.cards = []
self.allcards = []
# global indices
self.by_name = {}
self.by_type = {}
self.by_type_inclusive = {}
self.by_supertype = {}
self.by_supertype_inclusive = {}
self.by_subtype = {}
self.by_subtype_inclusive = {}
self.by_color = {}
self.by_color_inclusive = {}
self.by_color_count = {}
self.by_cmc = {}
self.by_cost = {}
self.by_power = {}
self.by_toughness = {}
self.by_pt = {}
self.by_loyalty = {}
self.by_textlines = {}
self.by_textlen = {}
self.indices = {
'by_name' : self.by_name,
'by_type' : self.by_type,
'by_type_inclusive' : self.by_type_inclusive,
'by_supertype' : self.by_supertype,
'by_supertype_inclusive' : self.by_supertype_inclusive,
'by_subtype' : self.by_subtype,
'by_subtype_inclusive' : self.by_subtype_inclusive,
'by_color' : self.by_color,
'by_color_inclusive' : self.by_color_inclusive,
'by_color_count' : self.by_color_count,
'by_cmc' : self.by_cmc,
'by_cost' : self.by_cost,
'by_power' : self.by_power,
'by_toughness' : self.by_toughness,
'by_pt' : self.by_pt,
'by_loyalty' : self.by_loyalty,
'by_textlines' : self.by_textlines,
'by_textlen' : self.by_textlen,
}
for card_src in card_srcs:
# the empty card is not interesting
if not card_src:
continue
card = Card(card_src)
if card.valid:
self.cards += [card]
self.allcards += [card]
elif card.parsed:
self.invalid_cards += [card]
self.allcards += [card]
else:
self.unparsed_cards += [card]
if card.parsed:
inc(self.by_name, card.name, [card])
inc(self.by_type, ' '.join(card.types), [card])
for t in card.types:
inc(self.by_type_inclusive, t, [card])
inc(self.by_supertype, ' '.join(card.supertypes), [card])
for t in card.supertypes:
inc(self.by_supertype_inclusive, t, [card])
inc(self.by_subtype, ' '.join(card.subtypes), [card])
for t in card.subtypes:
inc(self.by_subtype_inclusive, t, [card])
if card.cost.colors:
inc(self.by_color, card.cost.colors, [card])
for c in card.cost.colors:
inc(self.by_color_inclusive, c, [card])
inc(self.by_color_count, len(card.cost.colors), [card])
else:
# colorless, still want to include in these tables
inc(self.by_color, 'A', [card])
inc(self.by_color_inclusive, 'A', [card])
inc(self.by_color_count, 0, [card])
inc(self.by_cmc, card.cost.cmc, [card])
inc(self.by_cost, card.cost.encode() if card.cost.encode() else 'none', [card])
inc(self.by_power, card.pt_p, [card])
inc(self.by_toughness, card.pt_t, [card])
inc(self.by_pt, card.pt, [card])
inc(self.by_loyalty, card.loyalty, [card])
inc(self.by_textlines, len(card.text_lines), [card])
inc(self.by_textlen, len(card.text.encode()), [card])
# summarize the indices
# Yes, this printing code is pretty terrible.
def summarize(self, hsize = 10, vsize = 10, cmcsize = 20):
print '===================='
print str(len(self.cards)) + ' valid cards, ' + str(len(self.invalid_cards)) + ' invalid cards.'
print str(len(self.allcards)) + ' cards parsed, ' + str(len(self.unparsed_cards)) + ' failed to parse'
print '--------------------'
print str(len(self.by_name)) + ' unique card names'
print '--------------------'
print (str(len(self.by_color_inclusive)) + ' represented colors (including colorless as \'A\'), '
+ str(len(self.by_color)) + ' combinations')
print 'Breakdown by color:'
rows = [self.by_color_inclusive.keys()]
rows += [[len(self.by_color_inclusive[k]) for k in rows[0]]]
printrows(padrows(rows))
print 'Breakdown by number of colors:'
rows = [self.by_color_count.keys()]
rows += [[len(self.by_color_count[k]) for k in rows[0]]]
printrows(padrows(rows))
print '--------------------'
print str(len(self.by_type_inclusive)) + ' unique card types, ' + str(len(self.by_type)) + ' combinations'
print 'Breakdown by type:'
d = sorted(self.by_type_inclusive,
lambda x,y: cmp(len(self.by_type_inclusive[x]), len(self.by_type_inclusive[y])),
reverse = True)
rows = [[k for k in d[:hsize]]]
rows += [[len(self.by_type_inclusive[k]) for k in rows[0]]]
printrows(padrows(rows))
print '--------------------'
print (str(len(self.by_subtype_inclusive)) + ' unique subtypes, '
+ str(len(self.by_subtype)) + ' combinations')
print '-- Popular subtypes: --'
d = sorted(self.by_subtype_inclusive,
lambda x,y: cmp(len(self.by_subtype_inclusive[x]), len(self.by_subtype_inclusive[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
rows += [[k, len(self.by_subtype_inclusive[k])]]
printrows(padrows(rows))
print '-- Top combinations: --'
d = sorted(self.by_subtype,
lambda x,y: cmp(len(self.by_subtype[x]), len(self.by_subtype[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
rows += [[k, len(self.by_subtype[k])]]
printrows(padrows(rows))
print '--------------------'
print (str(len(self.by_supertype_inclusive)) + ' unique supertypes, '
+ str(len(self.by_supertype)) + ' combinations')
print 'Breakdown by supertype:'
d = sorted(self.by_supertype_inclusive,
lambda x,y: cmp(len(self.by_supertype_inclusive[x]),len(self.by_supertype_inclusive[y])),
reverse = True)
rows = [[k for k in d[:hsize]]]
rows += [[len(self.by_supertype_inclusive[k]) for k in rows[0]]]
printrows(padrows(rows))
print '--------------------'
print str(len(self.by_cmc)) + ' different CMCs, ' + str(len(self.by_cost)) + ' unique mana costs'
print 'Breakdown by CMC:'
d = sorted(self.by_cmc, reverse = False)
rows = [[k for k in d[:cmcsize]]]
rows += [[len(self.by_cmc[k]) for k in rows[0]]]
printrows(padrows(rows))
print '-- Popular mana costs: --'
d = sorted(self.by_cost,
lambda x,y: cmp(len(self.by_cost[x]), len(self.by_cost[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
rows += [[utils.from_mana(k), len(self.by_cost[k])]]
printrows(padrows(rows))
print '--------------------'
print str(len(self.by_pt)) + ' unique p/t combinations'
if len(self.by_power) > 0 and len(self.by_toughness) > 0:
print ('Largest power: ' + str(max(map(len, self.by_power)) - 1) +
', largest toughness: ' + str(max(map(len, self.by_toughness)) - 1))
print '-- Popular p/t values: --'
d = sorted(self.by_pt,
lambda x,y: cmp(len(self.by_pt[x]), len(self.by_pt[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
rows += [[utils.from_unary(k), len(self.by_pt[k])]]
printrows(padrows(rows))
print '--------------------'
print 'Loyalty values:'
d = sorted(self.by_loyalty,
lambda x,y: cmp(len(self.by_loyalty[x]), len(self.by_loyalty[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
rows += [[utils.from_unary(k), len(self.by_loyalty[k])]]
printrows(padrows(rows))
print '--------------------'
if len(self.by_textlen) > 0 and len(self.by_textlines) > 0:
print('Card text ranges from ' + str(min(self.by_textlen)) + ' to '
+ str(max(self.by_textlen)) + ' characters in length')
print('Card text ranges from ' + str(min(self.by_textlines)) + ' to '
+ str(max(self.by_textlines)) + ' lines')
print '-- Line counts by frequency: --'
d = sorted(self.by_textlines,
lambda x,y: cmp(len(self.by_textlines[x]), len(self.by_textlines[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
rows += [[k, len(self.by_textlines[k])]]
printrows(padrows(rows))
print '===================='
# describe outliers in the indices
def outliers(self, hsize = 10, vsize = 10, dump_invalid = False):
print '********************'
print 'Overview of indices:'
rows = [['Index Name', 'Keys', 'Total Members']]
for index in self.indices:
rows += [[index, len(self.indices[index]), index_size(self.indices[index])]]
printrows(padrows(rows))
print '********************'
if len(self.by_name) > 0:
scardname = sorted(self.by_name,
lambda x,y: cmp(len(x), len(y)),
reverse = False)[0]
print 'Shortest Cardname: (' + str(len(scardname)) + ')'
print ' ' + scardname
lcardname = sorted(self.by_name,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Longest Cardname: (' + str(len(lcardname)) + ')'
print ' ' + lcardname
d = sorted(self.by_name,
lambda x,y: cmp(len(self.by_name[x]), len(self.by_name[y])),
reverse = True)
rows = []
for k in d[0:vsize]:
if len(self.by_name[k]) > 1:
rows += [[k, len(self.by_name[k])]]
if rows == []:
print('No duplicated cardnames')
else:
print '-- Most duplicated names: --'
printrows(padrows(rows))
else:
print 'No cards indexed by name?'
print '--------------------'
if len(self.by_type) > 0:
ltypes = sorted(self.by_type,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Longest card type: (' + str(len(ltypes)) + ')'
print ' ' + ltypes
else:
print 'No cards indexed by type?'
if len(self.by_subtype) > 0:
lsubtypes = sorted(self.by_subtype,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Longest subtype: (' + str(len(lsubtypes)) + ')'
print ' ' + lsubtypes
else:
print 'No cards indexed by subtype?'
if len(self.by_supertype) > 0:
lsupertypes = sorted(self.by_supertype,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Longest supertype: (' + str(len(lsupertypes)) + ')'
print ' ' + lsupertypes
else:
print 'No cards indexed by supertype?'
print '--------------------'
if len(self.by_cost) > 0:
lcost = sorted(self.by_cost,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Longest mana cost: (' + str(len(lcost)) + ')'
print ' ' + utils.from_mana(lcost)
print '\n' + plimit(self.by_cost[lcost][0].encode()) + '\n'
else:
print 'No cards indexed by cost?'
if len(self.by_cmc) > 0:
lcmc = sorted(self.by_cmc, reverse = True)[0]
print 'Largest cmc: (' + str(lcmc) + ')'
print ' ' + str(self.by_cmc[lcmc][0].cost)
print '\n' + plimit(self.by_cmc[lcmc][0].encode())
else:
print 'No cards indexed by cmc?'
print '--------------------'
if len(self.by_power) > 0:
lpower = sorted(self.by_power,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Largest creature power: ' + utils.from_unary(lpower)
print '\n' + plimit(self.by_power[lpower][0].encode()) + '\n'
else:
print 'No cards indexed by power?'
if len(self.by_toughness) > 0:
ltoughness = sorted(self.by_toughness,
lambda x,y: cmp(len(x), len(y)),
reverse = True)[0]
print 'Largest creature toughness: ' + utils.from_unary(ltoughness)
print '\n' + plimit(self.by_toughness[ltoughness][0].encode())
else:
print 'No cards indexed by toughness?'
print '--------------------'
if len(self.by_textlines) > 0:
llines = sorted(self.by_textlines, reverse = True)[0]
print 'Most lines of text in a card: ' + str(llines)
print '\n' + plimit(self.by_textlines[llines][0].encode()) + '\n'
else:
print 'No cards indexed by line count?'
if len(self.by_textlen) > 0:
ltext = sorted(self.by_textlen, reverse = True)[0]
print 'Most chars in a card text: ' + str(ltext)
print '\n' + plimit(self.by_textlen[ltext][0].encode())
else:
print 'No cards indexed by char count?'
print '--------------------'
print 'There were ' + str(len(self.invalid_cards)) + ' invalid cards.'
if dump_invalid:
for card in self.invalid_cards:
print '\n' + repr(card.fields)
elif len(self.invalid_cards) > 0:
print 'Not summarizing.'
print '--------------------'
print 'There were ' + str(len(self.unparsed_cards)) + ' unparsed cards.'
if dump_invalid:
for card in self.unparsed_cards:
print '\n' + repr(card.fields)
elif len(self.unparsed_cards) > 0:
print 'Not summarizing.'
print '===================='

33
summarize.py Normal file
View File

@ -0,0 +1,33 @@
import sys
import lib.utils as utils
import lib.jdecode as jdecode
from lib.datalib import Datamine
def main(fname, verbose = True):
if fname[-5:] == '.json':
if verbose:
print 'This looks like a json file: ' + fname
json_srcs = jdecode.mtg_open_json(fname, verbose)
card_srcs = []
for json_cardname in json_srcs:
if len(json_srcs[json_cardname]) > 0:
card_srcs += [json_srcs[json_cardname][0]]
else:
if verbose:
print 'Opening encoded card file: ' + fname
with open(fname, 'rt') as f:
text = f.read()
card_srcs = text.split(utils.cardsep)
mine = Datamine(card_srcs)
mine.summarize()
mine.outliers(dump_invalid = False)
if __name__ == '__main__':
import sys
if len(sys.argv) == 2:
main(sys.argv[1])
else:
print 'Usage: ' + sys.argv[0] + ' ' + '<encoded file>'
exit(1)