#!/usr/bin/env python import sys import os import re from collections import OrderedDict # scipy is kinda necessary import scipy import scipy.stats import numpy as np import math def mean_nonan(l): filtered = [x for x in l if not math.isnan(x)] return np.mean(filtered) def gmean_nonzero(l): filtered = [x for x in l if x != 0 and not math.isnan(x)] return scipy.stats.gmean(filtered) libdir = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../lib') sys.path.append(libdir) datadir = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data') import jdecode import mtg_validate import ngrams def annotate_values(values): for k in values: (total, good, bad) = values[k] values[k] = OrderedDict([('total', total), ('good', good), ('bad', bad)]) return values def print_statistics(stats, ident = 0): for k in stats: if isinstance(stats[k], OrderedDict): print((' ' * ident + str(k) + ':')) print_statistics(stats[k], ident=ident + 2) elif isinstance(stats[k], dict): print((' ' * ident + str(k) + ': ')) elif isinstance(stats[k], list): print((' ' * ident + str(k) + ': ')) else: print((' ' * ident + str(k) + ': ' + str(stats[k]))) def get_statistics(fname, lm = None, sep = False, verbose=False): stats = OrderedDict() cards = jdecode.mtg_open_file(fname, verbose=verbose) stats['cards'] = cards # unpack the name of the checkpoint - terrible and hacky try: final_name = os.path.basename(fname) halves = final_name.split('_epoch') cp_name = halves[0] cp_info = halves[1][:-4] info_halves = cp_info.split('_') cp_epoch = float(info_halves[0]) fragments = info_halves[1].split('.') cp_vloss = float('.'.join(fragments[:2])) cp_temp = float('.'.join(fragments[-2:])) cp_ident = '.'.join(fragments[2:-2]) stats['cp'] = OrderedDict([('name', cp_name), ('epoch', cp_epoch), ('vloss', cp_vloss), ('temp', cp_temp), ('ident', cp_ident)]) except Exception as e: pass # validate ((total_all, total_good, total_bad, total_uncovered), values) = mtg_validate.process_props(cards) stats['props'] = annotate_values(values) stats['props']['overall'] = OrderedDict([('total', total_all), ('good', total_good), ('bad', total_bad), ('uncovered', total_uncovered)]) # distances distfname = fname + '.dist' if os.path.isfile(distfname): name_dupes = 0 card_dupes = 0 with open(distfname, 'rt') as f: distlines = f.read().split('\n') dists = OrderedDict([('name', []), ('cbow', [])]) for line in distlines: fields = line.split('|') if len(fields) < 4: continue idx = int(fields[0]) name = str(fields[1]) ndist = float(fields[2]) cdist = float(fields[3]) dists['name'] += [ndist] dists['cbow'] += [cdist] if ndist == 1.0: name_dupes += 1 if cdist == 1.0: card_dupes += 1 dists['name_mean'] = mean_nonan(dists['name']) dists['cbow_mean'] = mean_nonan(dists['cbow']) dists['name_geomean'] = gmean_nonzero(dists['name']) dists['cbow_geomean'] = gmean_nonzero(dists['cbow']) stats['dists'] = dists # n-grams if not lm is None: ngram = OrderedDict([('perp', []), ('perp_per', []), ('perp_max', []), ('perp_per_max', [])]) for card in cards: if len(card.text.text) == 0: perp = 0.0 perp_per = 0.0 elif sep: vtexts = [line.vectorize().split() for line in card.text_lines if len(line.vectorize().split()) > 0] perps = [lm.perplexity(vtext) for vtext in vtexts] perps_per = [perps[i] / float(len(vtexts[i])) for i in range(0, len(vtexts))] perp = gmean_nonzero(perps) perp_per = gmean_nonzero(perps_per) perp_max = max(perps) perp_per_max = max(perps_per) else: vtext = card.text.vectorize().split() perp = lm.perplexity(vtext) perp_per = perp / float(len(vtext)) perp_max = perp perp_per_max = perps_per ngram['perp'] += [perp] ngram['perp_per'] += [perp_per] ngram['perp_max'] += [perp_max] ngram['perp_per_max'] += [perp_per_max] ngram['perp_mean'] = mean_nonan(ngram['perp']) ngram['perp_per_mean'] = mean_nonan(ngram['perp_per']) ngram['perp_geomean'] = gmean_nonzero(ngram['perp']) ngram['perp_per_geomean'] = gmean_nonzero(ngram['perp_per']) stats['ngram'] = ngram return stats def main(infile, verbose = False): lm = ngrams.build_ngram_model(jdecode.mtg_open_file(str(os.path.join(datadir, 'output.txt'))), 3, separate_lines=True, verbose=True) stats = get_statistics(infile, lm=lm, sep=True, verbose=verbose) print_statistics(stats) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('infile', #nargs='?'. default=None, help='encoded card file or json corpus to process') parser.add_argument('-v', '--verbose', action='store_true', help='verbose output') args = parser.parse_args() main(args.infile, verbose=args.verbose) exit(0)