# Natural Language Toolkit: Language Models # # Copyright (C) 2001-2014 NLTK Project # Authors: Steven Bird # Daniel Blanchard # Ilia Kurenkov # URL: # For license information, see LICENSE.TXT # # adapted for mtgencode Nov. 2015 # an attempt was made to preserve the exact functionality of this code, # hampered somewhat by its brokenness from math import log from nltk.probability import ConditionalProbDist, ConditionalFreqDist, LidstoneProbDist from nltk.util import ngrams from nltk_model_api import ModelI from nltk import compat def _estimator(fdist, **estimator_kwargs): """ Default estimator function using a LidstoneProbDist. """ # can't be an instance method of NgramModel as they # can't be pickled either. return LidstoneProbDist(fdist, 0.001, **estimator_kwargs) @compat.python_2_unicode_compatible class NgramModel(ModelI): """ A processing interface for assigning a probability to the next word. """ def __init__(self, n, train, pad_left=True, pad_right=False, estimator=None, **estimator_kwargs): """ Create an ngram language model to capture patterns in n consecutive words of training text. An estimator smooths the probabilities derived from the text and may allow generation of ngrams not seen during training. See model.doctest for more detailed testing >>> from nltk.corpus import brown >>> lm = NgramModel(3, brown.words(categories='news')) >>> lm >>> lm._backoff >>> lm.entropy(brown.words(categories='humor')) ... # doctest: +ELLIPSIS 12.0399... :param n: the order of the language model (ngram size) :type n: int :param train: the training text :type train: list(str) or list(list(str)) :param pad_left: whether to pad the left of each sentence with an (n-1)-gram of empty strings :type pad_left: bool :param pad_right: whether to pad the right of each sentence with an (n-1)-gram of empty strings :type pad_right: bool :param estimator: a function for generating a probability distribution :type estimator: a function that takes a ConditionalFreqDist and returns a ConditionalProbDist :param estimator_kwargs: Extra keyword arguments for the estimator :type estimator_kwargs: (any) """ # protection from cryptic behavior for calling programs # that use the pre-2.0.2 interface assert(isinstance(pad_left, bool)) assert(isinstance(pad_right, bool)) self._lpad = ('',) * (n - 1) if pad_left else () self._rpad = ('',) * (n - 1) if pad_right else () # make sure n is greater than zero, otherwise print it assert (n > 0), n # For explicitness save the check whether this is a unigram model self.is_unigram_model = (n == 1) # save the ngram order number self._n = n # save left and right padding self._lpad = ('',) * (n - 1) if pad_left else () self._rpad = ('',) * (n - 1) if pad_right else () if estimator is None: estimator = _estimator cfd = ConditionalFreqDist() # set read-only ngrams set (see property declaration below to reconfigure) self._ngrams = set() # If given a list of strings instead of a list of lists, create enclosing list if (train is not None) and isinstance(train[0], compat.string_types): train = [train] # we need to keep track of the number of word types we encounter vocabulary = set() for sent in train: raw_ngrams = ngrams(sent, n, pad_left, pad_right, pad_symbol='') for ngram in raw_ngrams: self._ngrams.add(ngram) context = tuple(ngram[:-1]) token = ngram[-1] cfd[context][token] += 1 vocabulary.add(token) # Unless number of bins is explicitly passed, we should use the number # of word types encountered during training as the bins value. # If right padding is on, this includes the padding symbol. if 'bins' not in estimator_kwargs: estimator_kwargs['bins'] = len(vocabulary) self._model = ConditionalProbDist(cfd, estimator, **estimator_kwargs) # recursively construct the lower-order models if not self.is_unigram_model: self._backoff = NgramModel(n-1, train, pad_left, pad_right, estimator, **estimator_kwargs) self._backoff_alphas = dict() # For each condition (or context) for ctxt in cfd.conditions(): backoff_ctxt = ctxt[1:] backoff_total_pr = 0.0 total_observed_pr = 0.0 # this is the subset of words that we OBSERVED following # this context. # i.e. Count(word | context) > 0 for words in self._words_following(ctxt, cfd): # so, _words_following as fixed gives back a whole list now... for word in words: total_observed_pr += self.prob(word, ctxt) # we also need the total (n-1)-gram probability of # words observed in this n-gram context backoff_total_pr += self._backoff.prob(word, backoff_ctxt) assert (0 <= total_observed_pr <= 1), total_observed_pr # beta is the remaining probability weight after we factor out # the probability of observed words. # As a sanity check, both total_observed_pr and backoff_total_pr # must be GE 0, since probabilities are never negative beta = 1.0 - total_observed_pr # backoff total has to be less than one, otherwise we get # an error when we try subtracting it from 1 in the denominator assert (0 <= backoff_total_pr < 1), backoff_total_pr alpha_ctxt = beta / (1.0 - backoff_total_pr) self._backoff_alphas[ctxt] = alpha_ctxt # broken # def _words_following(self, context, cond_freq_dist): # for ctxt, word in cond_freq_dist.iterkeys(): # if ctxt == context: # yield word # fixed def _words_following(self, context, cond_freq_dist): for ctxt in cond_freq_dist.keys(): if ctxt == context: yield list(cond_freq_dist[ctxt].keys()) def prob(self, word, context): """ Evaluate the probability of this word in this context using Katz Backoff. :param word: the word to get the probability of :type word: str :param context: the context the word is in :type context: list(str) """ context = tuple(context) if (context + (word,) in self._ngrams) or (self.is_unigram_model): return self._model[context].prob(word) else: return self._alpha(context) * self._backoff.prob(word, context[1:]) def _alpha(self, context): """Get the backoff alpha value for the given context """ error_message = "Alphas and backoff are not defined for unigram models" assert not self.is_unigram_model, error_message if context in self._backoff_alphas: return self._backoff_alphas[context] else: return 1 def logprob(self, word, context): """ Evaluate the (negative) log probability of this word in this context. :param word: the word to get the probability of :type word: str :param context: the context the word is in :type context: list(str) """ return -log(self.prob(word, context), 2) @property def ngrams(self): return self._ngrams @property def backoff(self): return self._backoff @property def model(self): return self._model def choose_random_word(self, context): ''' Randomly select a word that is likely to appear in this context. :param context: the context the word is in :type context: list(str) ''' return self.generate(1, context)[-1] # NB, this will always start with same word if the model # was trained on a single text def generate(self, num_words, context=()): ''' Generate random text based on the language model. :param num_words: number of words to generate :type num_words: int :param context: initial words in generated string :type context: list(str) ''' text = list(context) for i in range(num_words): text.append(self._generate_one(text)) return text def _generate_one(self, context): context = (self._lpad + tuple(context))[-self._n + 1:] if context in self: return self[context].generate() elif self._n > 1: return self._backoff._generate_one(context[1:]) else: return '.' def entropy(self, text): """ Calculate the approximate cross-entropy of the n-gram model for a given evaluation text. This is the average log probability of each word in the text. :param text: words to use for evaluation :type text: list(str) """ H = 0.0 # entropy is conventionally denoted by "H" text = list(self._lpad) + text + list(self._rpad) for i in range(self._n - 1, len(text)): context = tuple(text[(i - self._n + 1):i]) token = text[i] H += self.logprob(token, context) return H / float(len(text) - (self._n - 1)) def perplexity(self, text): """ Calculates the perplexity of the given text. This is simply 2 ** cross-entropy for the text. :param text: words to calculate perplexity of :type text: list(str) """ return pow(2.0, self.entropy(text)) def __contains__(self, item): if not isinstance(item, tuple): item = (item,) return item in self._model def __getitem__(self, item): if not isinstance(item, tuple): item = (item,) return self._model[item] def __repr__(self): return '' % (len(self._ngrams), self._n) if __name__ == "__main__": import doctest doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)