#!/usr/bin/env python import sys import os import pickle libdir = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../lib') sys.path.append(libdir) import jdecode import nltk_model as model def update_ngrams(lines, gramdict, grams): for line in lines: for i in range(0, len(line) - (grams - 1)): ngram = ' '.join([line[i + j] for j in range(0, grams)]) if ngram in gramdict: gramdict[ngram] += 1 else: gramdict[ngram] = 1 def describe_bins(gramdict, bins): bins = sorted(bins) counts = [0 for _ in range(0, len(bins) + 1)] for ngram in gramdict: for i in range(0, len(bins) + 1): if i < len(bins): if gramdict[ngram] <= bins[i]: counts[i] += 1 break else: # didn't fit into any of the smaller bins, stick in on the end counts[-1] += 1 for i in range(0, len(counts)): if counts[i] > 0: print((' ' + (str(bins[i]) if i < len(bins) else str(bins[-1]) + '+') + ': ' + str(counts[i]))) def extract_language(cards, separate_lines=True): if separate_lines: lang = [line.vectorize() for card in cards for line in card.text_lines] else: lang = [card.text.vectorize() for card in cards] return [s.split() for s in lang] def build_ngram_model(cards, n, separate_lines=True, verbose=False): if verbose: print(('generating ' + str(n) + '-gram model')) lang = extract_language(cards, separate_lines=separate_lines) if verbose: print(('found ' + str(len(lang)) + ' sentences')) lm = model.NgramModel(n, lang, pad_left=True, pad_right=True) if verbose: print(lm) return lm def main(fname, oname, gmin = 2, gmax = 8, nltk = False, sep = False, verbose = False): # may need to set special arguments here cards = jdecode.mtg_open_file(fname, verbose=verbose) gmin = int(gmin) gmax = int(gmax) if nltk: n = gmin lm = build_ngram_model(cards, n, separate_lines=sep, verbose=verbose) if verbose: teststr = 'when @ enters the battlefield' print(('litmus test: perplexity of ' + repr(teststr))) print((' ' + str(lm.perplexity(teststr.split())))) if verbose: print(('pickling module to ' + oname)) with open(oname, 'wb') as f: pickle.dump(lm, f) else: bins = [1, 2, 3, 10, 30, 100, 300, 1000] if gmin < 2 or gmax < gmin: print('invalid gram sizes: ' + str(gmin) + '-' + str(gmax)) exit(1) for grams in range(gmin, gmax + 1): if verbose: print('generating ' + str(grams) + '-grams...') gramdict = {} for card in cards: update_ngrams(card.text_lines_words, gramdict, grams) oname_full = oname + '.' + str(grams) + 'g' if verbose: print((' writing ' + str(len(gramdict)) + ' unique ' + str(grams) + '-grams to ' + oname_full)) describe_bins(gramdict, bins) with open(oname_full, 'wt') as f: for ngram in sorted(gramdict, lambda x: gramdict[x], reverse = True): f.write((ngram + ': ' + str(gramdict[ngram]) + '\n').encode('utf-8')) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('infile', #nargs='?'. default=None, help='encoded card file or json corpus to process') parser.add_argument('outfile', #nargs='?', default=None, help='base name of output file, outputs ending in .2g, .3g etc. will be produced') parser.add_argument('-min', '--min', action='store', default='2', help='minimum gram size to compute') parser.add_argument('-max', '--max', action='store', default='8', help='maximum gram size to compute') parser.add_argument('-nltk', '--nltk', action='store_true', help='use nltk model.NgramModel, with n = min') parser.add_argument('-s', '--separate', action='store_true', help='separate card text into lines when constructing nltk model') parser.add_argument('-v', '--verbose', action='store_true', help='verbose output') args = parser.parse_args() main(args.infile, args.outfile, gmin=args.min, gmax=args.max, nltk=args.nltk, sep=args.separate, verbose=args.verbose) exit(0)