mtgencode/scripts/analysis.py
2015-12-06 20:45:52 -08:00

167 lines
5.9 KiB
Python
Executable file

#!/usr/bin/env python
import sys
import os
import re
from collections import OrderedDict
# scipy is kinda necessary
import scipy
import scipy.stats
import numpy as np
import math
def mean_nonan(l):
filtered = [x for x in l if not math.isnan(x)]
return np.mean(filtered)
def gmean_nonzero(l):
filtered = [x for x in l if x != 0 and not math.isnan(x)]
return scipy.stats.gmean(filtered)
libdir = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../lib')
sys.path.append(libdir)
datadir = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../data')
import jdecode
import mtg_validate
import ngrams
def annotate_values(values):
for k in values:
(total, good, bad) = values[k]
values[k] = OrderedDict([('total', total), ('good', good), ('bad', bad)])
return values
def print_statistics(stats, ident = 0):
for k in stats:
if isinstance(stats[k], OrderedDict):
print(' ' * ident + str(k) + ':')
print_statistics(stats[k], ident=ident+2)
elif isinstance(stats[k], dict):
print(' ' * ident + str(k) + ': <dict with ' + str(len(stats[k])) + ' entries>')
elif isinstance(stats[k], list):
print(' ' * ident + str(k) + ': <list with ' + str(len(stats[k])) + ' entries>')
else:
print(' ' * ident + str(k) + ': ' + str(stats[k]))
def get_statistics(fname, lm = None, sep = False, verbose=False):
stats = OrderedDict()
cards = jdecode.mtg_open_file(fname, verbose=verbose)
stats['cards'] = cards
# unpack the name of the checkpoint - terrible and hacky
try:
final_name = os.path.basename(fname)
halves = final_name.split('_epoch')
cp_name = halves[0]
cp_info = halves[1][:-4]
info_halves = cp_info.split('_')
cp_epoch = float(info_halves[0])
fragments = info_halves[1].split('.')
cp_vloss = float('.'.join(fragments[:2]))
cp_temp = float('.'.join(fragments[-2:]))
cp_ident = '.'.join(fragments[2:-2])
stats['cp'] = OrderedDict([('name', cp_name),
('epoch', cp_epoch),
('vloss', cp_vloss),
('temp', cp_temp),
('ident', cp_ident)])
except Exception as e:
pass
# validate
((total_all, total_good, total_bad, total_uncovered),
values) = mtg_validate.process_props(cards)
stats['props'] = annotate_values(values)
stats['props']['overall'] = OrderedDict([('total', total_all),
('good', total_good),
('bad', total_bad),
('uncovered', total_uncovered)])
# distances
distfname = fname + '.dist'
if os.path.isfile(distfname):
name_dupes = 0
card_dupes = 0
with open(distfname, 'rt') as f:
distlines = f.read().split('\n')
dists = OrderedDict([('name', []), ('cbow', [])])
for line in distlines:
fields = line.split('|')
if len(fields) < 4:
continue
idx = int(fields[0])
name = str(fields[1])
ndist = float(fields[2])
cdist = float(fields[3])
dists['name'] += [ndist]
dists['cbow'] += [cdist]
if ndist == 1.0:
name_dupes += 1
if cdist == 1.0:
card_dupes += 1
dists['name_mean'] = mean_nonan(dists['name'])
dists['cbow_mean'] = mean_nonan(dists['cbow'])
dists['name_geomean'] = gmean_nonzero(dists['name'])
dists['cbow_geomean'] = gmean_nonzero(dists['cbow'])
stats['dists'] = dists
# n-grams
if not lm is None:
ngram = OrderedDict([('perp', []), ('perp_per', []),
('perp_max', []), ('perp_per_max', [])])
for card in cards:
if len(card.text.text) == 0:
perp = 0.0
perp_per = 0.0
elif sep:
vtexts = [line.vectorize().split() for line in card.text_lines
if len(line.vectorize().split()) > 0]
perps = [lm.perplexity(vtext) for vtext in vtexts]
perps_per = [perps[i] / float(len(vtexts[i])) for i in range(0, len(vtexts))]
perp = gmean_nonzero(perps)
perp_per = gmean_nonzero(perps_per)
perp_max = max(perps)
perp_per_max = max(perps_per)
else:
vtext = card.text.vectorize().split()
perp = lm.perplexity(vtext)
perp_per = perp / float(len(vtext))
perp_max = perp
perp_per_max = perps_per
ngram['perp'] += [perp]
ngram['perp_per'] += [perp_per]
ngram['perp_max'] += [perp_max]
ngram['perp_per_max'] += [perp_per_max]
ngram['perp_mean'] = mean_nonan(ngram['perp'])
ngram['perp_per_mean'] = mean_nonan(ngram['perp_per'])
ngram['perp_geomean'] = gmean_nonzero(ngram['perp'])
ngram['perp_per_geomean'] = gmean_nonzero(ngram['perp_per'])
stats['ngram'] = ngram
return stats
def main(infile, verbose = False):
lm = ngrams.build_ngram_model(jdecode.mtg_open_file(str(os.path.join(datadir, 'output.txt'))),
3, separate_lines=True, verbose=True)
stats = get_statistics(infile, lm=lm, sep=True, verbose=verbose)
print_statistics(stats)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('infile', #nargs='?'. default=None,
help='encoded card file or json corpus to process')
parser.add_argument('-v', '--verbose', action='store_true',
help='verbose output')
args = parser.parse_args()
main(args.infile, verbose=args.verbose)
exit(0)