Merge branch 'master' into es6

This commit is contained in:
pyoor 2018-08-27 19:01:17 -04:00 committed by GitHub
commit e6a1f1fafa
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
13 changed files with 1567 additions and 1156 deletions

2
.gitignore vendored
View file

@ -1,4 +1,6 @@
.DS_Store
.vscode
node_modules
package-lock.json
yarn.lock
tests/coverage

View file

@ -1,31 +1,33 @@
language: node_js
dist: trusty
env:
- DISPLAY=:99.0 CHROME_BIN=chromium-browser
- DISPLAY=:99.0 CHROME_BIN=chromium-browser
node_js:
- "7"
- "7"
addons:
firefox: latest
- firefox: latest
before_script:
- sh -e /etc/init.d/xvfb start
before_deploy:
- mkdir -p deploy
- ./build.py -l lib -d deploy
- sh -e /etc/init.d/xvfb start
script:
- yarn run build
after_success:
- yarn run docs
notifications:
slack:
secure: Kwe1KBh4SMzgXaj6GQg3ZmopRYcDR3Vnd4C/gyiEOJsXzKRlU5dA7WwM/mbyOe9+ZvWDyp+g2CoQYYyvLR0SHEy1m0gn6M8fBzgSZQlWxOxAJxkwVsyxUNwAy2FylMpS+ugpw/fBMSbnSFqfZSa/tGB3KhBc0yA7V9wVS0hnwBfICqKKlFdLPcp+Us4zpXRUmcL1e0BVwm2klJi0CoKlOmTa4lI3tUa/YiuuMpgk89/PioMEr6/PP+5OfWV624djw2gznoualvcwdfZniC/oxkdTUbcu4nbTf+bFk5uwwW+XBpUhm9rMUoftngYCrWdtYHS6qenyzmflO5bgCDg5W8onv3qgMcDTEHDjlO8JMoEQLC2o27Hsyukrh2Iu0Hn2k4S10ZIDWLUZXf8ERKdU7v8o5xaiCrP7NO8fJlyGbWwYxwpFi9dpacb8qWuWw53k8+ld9orl2Zu5t1Y1QJCvT0DP0iGYSxbbICfex7im0fgh3A+MHTfhxxiGQtFJRUxqO5wGCIsT4dJJkYwRJ1HoCPyLT1x1WT8iy4lr8ivRhanEwQ5g2OmuRKz522yCrm2DPaRR/LDhqK9xghJqqh4RNx9Be5xNaxSxKs4Hcya4ZXrGaU9tzGTehRkNQksKUHq9PpdY85Mbk84wEq7zKLhtLPTn17DQePFm2DbdX4392o4=
deploy:
- provider: releases
api_key:
secure: HszUovTqcRxuXTmH3/rStEe1ZeZbrZweQah8Bq0POs89P3/GjyEat11WbH9S7tfIT1yVcF736TmsDNRtl34Rmr71P7rczwFlX1yJOIamH4jT9vG8ocpZH4Orc6XA2s7UclD1HwJwStM1k2J4CV34eTTlX36ngjYrp09HertXAQWSK6TZk9RK6ql2HlNzchImz2EY1aQnfqkrFByOtM4o/SJJryJJBJUMD69gWrYu6cv51w/jMEoUtzvV6Nr2o9YOuo97B0scJmbxgfx67FaCQwEOxKtr8xT5nttJ2q6EeaAiErAieG8/o8yRsJRFrHyVm42v9PEfoe8O8Y4g/1VrtbjY3vH8LPpCotMxhshjUCBaLDc8TCC/osik6dxhv/fqjbdPwrGRW2qzsmXIZug7+YCEW+qUFRPwwX+Cr0ENnaPFMSDFxANeLF7KfF7oaVnr8JTlZnu9G+Uliqe6RNCoWfQtpTRM759cDLQp4b5eBQF2G61x2XOdRqcNZepRaRVnsaCo0lNPW9o5HCQnJnMbEB9Gdowt18PwgVucIdIPJeAPodMs40s7sUOP5Xik58b4YBG9lsgLBcfCgTy+n8JPS2LJsclG82pBACtSV+ucc6rVeD+5fbSUxn4ItaK4e0MonCv4Jnp7zGn6hErcpexBmXSdYQSrdsemKDTGHibOF6U=
file: deploy/octo.js
skip_cleanup: true
on:
tags: true
- provider: pages
github_token:
secure: HszUovTqcRxuXTmH3/rStEe1ZeZbrZweQah8Bq0POs89P3/GjyEat11WbH9S7tfIT1yVcF736TmsDNRtl34Rmr71P7rczwFlX1yJOIamH4jT9vG8ocpZH4Orc6XA2s7UclD1HwJwStM1k2J4CV34eTTlX36ngjYrp09HertXAQWSK6TZk9RK6ql2HlNzchImz2EY1aQnfqkrFByOtM4o/SJJryJJBJUMD69gWrYu6cv51w/jMEoUtzvV6Nr2o9YOuo97B0scJmbxgfx67FaCQwEOxKtr8xT5nttJ2q6EeaAiErAieG8/o8yRsJRFrHyVm42v9PEfoe8O8Y4g/1VrtbjY3vH8LPpCotMxhshjUCBaLDc8TCC/osik6dxhv/fqjbdPwrGRW2qzsmXIZug7+YCEW+qUFRPwwX+Cr0ENnaPFMSDFxANeLF7KfF7oaVnr8JTlZnu9G+Uliqe6RNCoWfQtpTRM759cDLQp4b5eBQF2G61x2XOdRqcNZepRaRVnsaCo0lNPW9o5HCQnJnMbEB9Gdowt18PwgVucIdIPJeAPodMs40s7sUOP5Xik58b4YBG9lsgLBcfCgTy+n8JPS2LJsclG82pBACtSV+ucc6rVeD+5fbSUxn4ItaK4e0MonCv4Jnp7zGn6hErcpexBmXSdYQSrdsemKDTGHibOF6U=
local_dir: deploy
skip_cleanup: true
on:
branch: master
- provider: releases
api_key:
secure: HszUovTqcRxuXTmH3/rStEe1ZeZbrZweQah8Bq0POs89P3/GjyEat11WbH9S7tfIT1yVcF736TmsDNRtl34Rmr71P7rczwFlX1yJOIamH4jT9vG8ocpZH4Orc6XA2s7UclD1HwJwStM1k2J4CV34eTTlX36ngjYrp09HertXAQWSK6TZk9RK6ql2HlNzchImz2EY1aQnfqkrFByOtM4o/SJJryJJBJUMD69gWrYu6cv51w/jMEoUtzvV6Nr2o9YOuo97B0scJmbxgfx67FaCQwEOxKtr8xT5nttJ2q6EeaAiErAieG8/o8yRsJRFrHyVm42v9PEfoe8O8Y4g/1VrtbjY3vH8LPpCotMxhshjUCBaLDc8TCC/osik6dxhv/fqjbdPwrGRW2qzsmXIZug7+YCEW+qUFRPwwX+Cr0ENnaPFMSDFxANeLF7KfF7oaVnr8JTlZnu9G+Uliqe6RNCoWfQtpTRM759cDLQp4b5eBQF2G61x2XOdRqcNZepRaRVnsaCo0lNPW9o5HCQnJnMbEB9Gdowt18PwgVucIdIPJeAPodMs40s7sUOP5Xik58b4YBG9lsgLBcfCgTy+n8JPS2LJsclG82pBACtSV+ucc6rVeD+5fbSUxn4ItaK4e0MonCv4Jnp7zGn6hErcpexBmXSdYQSrdsemKDTGHibOF6U=
file: deploy/octo.js
skip_cleanup: true
on:
tags: true
- provider: pages
keep-history: true
skip_cleanup: true
github_token:
secure: PvCrB9ckDfWedl1rdo/3mUvCy/Vg4ksZR2mj4KT3AdEyukbpMiVVDkocMFohuIq+mnRdeyhpvM2KluLHhQrEhWjvqVobiZ9/c0gWWxZHV8doDdqNUPm693MpGojMOxHT4qRih6x9KyjanmWAwy/Bc972dpD5vtaTx1gKOzRUjUI=
on:
branch: master
local_dir: docs/

View file

@ -1,31 +0,0 @@
module.exports = function (grunt) {
let pkg = grunt.file.readJSON('package.json')
grunt.initConfig({
pkg: pkg,
karma: {
unit: {
configFile: 'karma.conf.js'
}
},
coveralls: {
options: {
coverageDir: 'tests/coverage/',
force: true
}
},
standard: {
options: pkg.standard,
lib: {
src: ['lib/**/*.js']
}
}
})
grunt.loadNpmTasks('grunt-karma')
grunt.loadNpmTasks('grunt-karma-coveralls')
grunt.loadNpmTasks('grunt-standard')
grunt.registerTask('test', ['standard', 'karma', 'coveralls'])
}

View file

@ -18,19 +18,24 @@ Octo.js bundles core functions and generic boilerplate code commonly used in mos
Octo's future aims to be a stable, well-tested and well-documented standard library for fuzzing in a JavaScript environment.
## Note
The ES6 branch is under active development while we are incorporating it with our existing fuzzers.
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Playbook](#playbook)
- [Usage in Node](#usage-in-node)
- [Usage in Browser](#usage-in-browser)
- [Develop](#develop)
- [Testing](#testing)
- [API Documentation](#api-documentation)
## Playbook
### Playbook
https://runkit.com/posidron/octo-js-playbook
## Node
### Usage in Node
```
npm i @mozillasecurity/octo
yarn add @mozillasecurity/octo
```
```
@ -38,33 +43,35 @@ const {random} = require('@mozillasecurity/octo')
random.init()
```
## Browser
We have not yet merged ES6 to master, hence the browser version which was released on master is not up-to-date.
Use the `dist/octo.js` version of this branch by running the following command.
### Usage in Browser
```
npm run build
yarn build
```
## Development
### Develop
```bash
npm install
npm run build
npm run watch
npm run test:lint
yarn install
yarn lint
yarn test
yarn build
```
## Testing
### Testing
Tests live in the `tests/` subdirectory, and are written for [QUnit](https://qunitjs.com/).
To run tests locally, open `tests/index.html` in a browser.
The automated tests are run in Firefox or Chrome using [Karma](https://karma-runner.github.io/).
To run the automated tests:
Octo.js uses Jest for testing. Each directory should contain a `__tests__` folder containing the tests.
```bash
npm test
yarn test
```
### API Documentation
* https://
or
```
yarn docs
```

View file

@ -1,60 +0,0 @@
module.exports = function (config) {
let configuration = {
basePath: './tests',
frameworks: ['qunit'],
files: [
'../lib/utils/init.js',
'../lib/utils/*.js',
'../lib/logging/*.js',
'../lib/make/init.js',
'../lib/make/*.js',
'../lib/random/*.js',
'**/*.js'
],
exclude: [
],
preprocessors: {
'../lib/**/*.js': ['coverage']
},
reporters: ['progress', 'coverage'],
port: 9876,
colors: true,
logLevel: config.LOG_INFO,
autoWatch: true,
browsers: ['Chrome', 'Firefox'],
singleRun: true,
browserNoActivityTimeout: 30000,
customLaunchers: {
Chrome_travis_ci: {
base: 'Chrome',
flags: ['--no-sandbox']
}
},
coverageReporter: {
reporters: [
{ type: 'lcov', dir: 'coverage/' },
{ type: 'text-summary' }
]
}
}
if (process.env.TRAVIS) {
configuration.browsers = ['Chrome_travis_ci', 'Firefox']
}
config.set(configuration)
}

View file

@ -0,0 +1,92 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* eslint-env jest */
const MersenneTwister = require('../mersennetwister')
describe('MersenneTwister', () => {
test('uniform distribution', () => {
const N = Math.pow(2, 18)
const TRIES = 10
const XSQ = 293.25 // quantile of chi-square dist. k=255, p=.05
let mt = new MersenneTwister()
mt.seed(Math.random() * 0x100000000)
const _test = () => {
let tries = []
for (let attempt = 0; attempt < TRIES; ++attempt) {
let data = new Uint32Array(N)
let sh
for (let i = 0; i < data.length; ++i) {
data[i] = mt.int32()
}
for (sh = 0; sh <= 24; ++sh) {
let bins = new Uint32Array(256)
for (let b of data) {
++bins[(b >>> sh) & 0xff]
}
let xsq = bins.reduce((a, v) => {
let e = N / bins.length
return a + Math.pow(v - e, 2) / e
}, 0)
/*
* XSQ = scipy.stats.chi2.isf(.05, 255)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
console.log(`Expected x^2 to be < ${XSQ}, got ${xsq} on attempt #${attempt + 1}`)
return true
}
tries.push(xsq)
}
if (sh === 25) {
return
}
}
return false
}
expect(_test()).toBe(true)
})
test('float distribution', () => {
const N = Math.pow(2, 18)
const TRIES = 3
const XSQ = 564.7 // quantile of chi-square dist. k=511, p=.05
let mt = new MersenneTwister()
mt.seed(Math.random() * 0x100000000)
const _test = () => {
let tries = []
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(512)
for (let i = 0; i < N; ++i) {
let tmp = (mt.real2() * bins.length) >>> 0
if (tmp >= bins.length) {
throw new Error('random.float() >= 1.0')
}
++bins[tmp]
}
let xsq = bins.reduce((a, v) => {
let e = N / bins.length
return a + Math.pow(v - e, 2) / e
}, 0)
/*
* XSQ = scipy.stats.chi2.isf(.05, 511)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
console.log(`Expected x^2 to be < ${XSQ}, got ${xsq} on attempt #${attempt + 1}`)
return true
}
tries.push(xsq)
}
// assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": " + tries)
return false
}
expect(_test()).toBe(true)
})
})

File diff suppressed because it is too large Load diff

View file

@ -3,7 +3,7 @@
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
const MersenneTwister = require('./mersennetwister')
const {logger} = require('../logging')
const logger = require('../logging')
class random {
/**

View file

@ -4,7 +4,7 @@
const random = require('../random')
const utils = require('../utils')
const {logger} = require('../logging')
const logger = require('../logging')
var o = null // eslint-disable-line no-unused-vars

View file

@ -1,7 +1,7 @@
{
"name": "@mozillasecurity/octo",
"version": "1.0.14",
"description": "",
"version": "1.0.15",
"description": "A unified shared library which aids in building fuzzers for browsers or as complement for an existing fuzzing framework.",
"keywords": [
"fuzzing",
"browser",
@ -9,7 +9,7 @@
"node",
"library"
],
"homepage": "https://github.com/mozillasecurity/octo/tree/es6",
"homepage": "https://github.com/mozillasecurity/octo",
"repository": {
"type": "git",
"url": "https://github.com/mozillasecurity/octo.git"
@ -21,18 +21,20 @@
"author": "Christoph Diehl <cdiehl@mozilla.com>",
"license": "MPL-2.0",
"scripts": {
"test": "grunt test --verbose",
"test:lint": "cross-env NODE_ENV=test standard --verbose",
"test:lint:fix": "cross-env NODE_ENV=test standard --fix --verbose",
"test": "jest --silent",
"coverage": "cross-env NODE_ENV=test jest --silent --coverage --collectCoverageFrom=lib/**/*.js",
"coveralls": "yarn coverage && cat ./coverage/lcov.info | coveralls",
"lint": "cross-env NODE_ENV=test standard --verbose",
"lint:fix": "cross-env NODE_ENV=test standard --fix --verbose",
"docs": "esdoc",
"build": "webpack -p",
"watch": "webpack --watch",
"precommit": "npm run test:lint",
"postinstall": "npm run build",
"precommit": "yarn lint",
"postinstall": "yarn build",
"release": "np"
},
"standard": {
"ignore": [
"tests/**",
"dist/"
],
"envs": {
@ -41,26 +43,43 @@
"es6": true
}
},
"jest": {
"verbose": true
},
"esdoc": {
"source": "./lib",
"destination": "./docs",
"plugins": [
{
"name": "esdoc-standard-plugin",
"option": {
"lint": {
"enable": true
},
"coverage": {
"enable": true
}
}
},
{
"name": "esdoc-node"
}
]
},
"devDependencies": {
"coveralls": "^3.0.2",
"cross-env": "^5.1.4",
"grunt": "*",
"grunt-karma": "*",
"grunt-karma-coveralls": "*",
"grunt-standard": "*",
"esdoc": "^1.1.0",
"esdoc-node": "^1.0.3",
"esdoc-standard-plugin": "^1.0.0",
"husky": "^0.14.3",
"karma": "*",
"karma-chrome-launcher": "*",
"karma-coverage": "*",
"karma-firefox-launcher": "^1.1.0",
"karma-qunit": "^2.0.1",
"jest": "^23.5.0",
"np": "^3.0.4",
"qunit": "^2.5.1",
"qunitjs": "^2.4.1",
"standard": "^11.0.1"
"standard": "^11.0.1",
"webpack": "^4.1.1",
"webpack-cli": "^3.1.0"
},
"dependencies": {
"jsesc": "^2.5.1",
"webpack": "^4.1.1",
"webpack-cli": "^2.0.12"
"jsesc": "^2.5.1"
}
}

View file

@ -1,44 +0,0 @@
<!-- This Source Code Form is subject to the terms of the Mozilla Public
- License, v. 2.0. If a copy of the MPL was not distributed with this
- file, You can obtain one at http://mozilla.org/MPL/2.0/. -->
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<title>Octo Unit Tests</title>
<link rel="stylesheet" href="https://code.jquery.com/qunit/qunit-2.3.0.css">
</head>
<body>
<div id="qunit"></div>
<div id="qunit-fixture"></div>
<script src="https://code.jquery.com/qunit/qunit-2.3.0.js"></script>
<!-- Include sources -->
<script src="../lib/utils/init.js"></script>
<script src="../lib/utils/block.js"></script>
<script src="../lib/utils/common.js"></script>
<script src="../lib/utils/objects.js"></script>
<script src="../lib/utils/platform.js"></script>
<script src="../lib/utils/prototypes.js"></script>
<script src="../lib/utils/script.js"></script>
<script src="../lib/logging/console.js"></script>
<script src="../lib/make/init.js"></script>
<script src="../lib/make/arrays.js"></script>
<script src="../lib/make/colors.js"></script>
<script src="../lib/make/files.js"></script>
<script src="../lib/make/fonts.js"></script>
<script src="../lib/make/mime.js"></script>
<script src="../lib/make/network.js"></script>
<script src="../lib/make/numbers.js"></script>
<script src="../lib/make/shaders.js"></script>
<script src="../lib/make/text.js"></script>
<script src="../lib/make/types.js"></script>
<script src="../lib/make/units.js"></script>
<script src="../lib/random/mersennetwister.js"></script>
<script src="../lib/random/random.js"></script>
<!-- Include tests -->
<script src="random/mersennetwister.js"></script>
<script src="random/random.js"></script>
</body>
</html>

View file

@ -1,58 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
QUnit.test("MersenneTwister test uniform distribution", function(assert) {
const N = Math.pow(2, 18), TRIES = 10, XSQ = 293.25; // quantile of chi-square dist. k=255, p=.05
let mt = new MersenneTwister();
mt.seed(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let data = new Uint32Array(N), sh;
for (let i = 0; i < data.length; ++i) {
data[i] = mt.int32();
}
for (sh = 0; sh <= 24; ++sh) {
let bins = new Uint32Array(256);
for (let b of data) {
++bins[(b >>> sh) & 0xFF];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 255)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq >= XSQ)
break;
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
}
if (sh == 25) {
return;
}
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ);
});
QUnit.test("MersenneTwister test float distribution", function(assert) {
const N = Math.pow(2, 18), TRIES = 3, XSQ = 564.7; // quantile of chi-square dist. k=511, p=.05
let tries = [], mt = new MersenneTwister();
mt.seed(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(512);
for (let i = 0; i < N; ++i) {
let tmp = (mt.real2() * bins.length) >>> 0;
if (tmp >= bins.length) throw "random.float() >= 1.0";
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 511)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});

View file

@ -1,892 +0,0 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
QUnit.test("random.init() is required", function(assert) {
assert.throws(random.number, /undefined/, "twister should be uninitialized before random.init()");
random.init(1);
random.number();
});
QUnit.test("random.number() corner cases", function(assert) {
random.init(Math.random() * 0x100000000);
let sum = 0;
for (let i = 0; i < 100; ++i)
sum += random.number(0);
assert.equal(sum, 0);
for (let i = 0; i < 100; ++i)
sum += random.number(1);
assert.equal(sum, 0);
let bins = new Uint32Array(2);
for (let i = 0; i < 100; ++i)
++bins[random.number(2)];
assert.equal(bins[0] + bins[1], 100);
assert.ok(bins[0] > 20);
sum = 0;
for (let i = 0; i < 15; ++i)
sum |= random.number();
assert.equal(sum>>>0, 0xFFFFFFFF);
});
QUnit.test("random.number() uniform distribution", function(assert) {
const N = Math.pow(2, 17), TRIES = 3, XSQ = 564.7; // quantile of chi-square dist. k=511, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(512);
for (let i = 0; i < N; ++i) {
let tmp = random.number(bins.length);
if (tmp >= bins.length) throw "random.number() >= limit";
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 511)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.float() uniform distribution", function(assert) {
const N = Math.pow(2, 17), TRIES = 3, XSQ = 564.7; // quantile of chi-square dist. k=511, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(512);
for (let i = 0; i < N; ++i) {
let tmp = (random.float() * bins.length) >>> 0;
if (tmp >= bins.length) throw "random.float() >= 1.0";
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 511)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.range() uniform distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 66.34; // quantile of chi-square dist. k=49, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(50);
for (let i = 0; i < N; ++i) {
let tmp = random.range(0, bins.length - 1);
if (tmp >= bins.length) throw "random.range() > upper bound";
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 49)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.range() uniform distribution with offset", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 66.34; // quantile of chi-square dist. k=49, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(50);
for (let i = 0; i < N; ++i) {
let tmp = random.range(10, 10 + bins.length - 1) - 10;
if (tmp < 0) throw "random.range() < lower bound";
if (tmp >= bins.length) throw "random.range() > upper bound";
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 49)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.range() PRNG reproducibility", function(assert) {
let seed, result1, result2;
seed = Math.random() * 0x100000000;
for (let t = 0; t < 50; ++t) {
random.init(seed);
result1 = random.range(1, 20);
for (let i = 0; i < 5; ++i) {
random.init(seed);
result2 = random.range(1, 20);
assert.equal(result1, result2, "both results are the same")
}
seed = random.number();
}
});
QUnit.test("random.ludOneTo() distribution", function(assert) {
const N = 1e5, TRIES = 3, XSQ = 123.22; // quantile of chi-square dist. k=99, p=.05
let dist = new Uint32Array(100), tries = [];
random.init(Math.random() * 0x100000000);
/* build the ideal distribution for comparison
* I thought this would be the PDF of the log-normal distribution, but I couldn't get mu & sigma figured out? */
for (let i = 0; i < (100 * dist.length); ++i) {
dist[Math.floor(Math.exp(i / (100*dist.length) * Math.log(dist.length)))] += N / (dist.length * 100);
}
assert.equal(dist[0], 0);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(dist.length), xsq = 0;
for (let i = 0; i < N; ++i) {
let tmp = random.ludOneTo(bins.length)>>>0;
if (tmp >= bins.length) throw "random.ludOneTo() > upper bound"; // this could happen..
++bins[tmp];
}
assert.equal(bins[0], 0);
for (let i = 1; i < bins.length; ++i) {
xsq += Math.pow(bins[i] - dist[i], 2) / dist[i];
}
/*
* XSQ = scipy.stats.chi2.isf(.05, 99)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.item() exception cases", function(assert) {
assert.throws(random.item, /received an invalid object/);
assert.throws(function(){ return random.item(1); }, /received an invalid object/);
assert.throws(function(){ return random.item("1"); }, /received an invalid object/);
assert.throws(function(){ return random.item({}); }, /received an invalid object/);
});
QUnit.test("random.item() distribution with list", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
for (let i = 0; i < N; ++i) {
let tmp = random.item([99, 100, 101]) - 99;
if (tmp < 0) throw "random.item() < lower bound";
if (tmp >= bins.length) throw "random.item() > upper bound";
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.key() distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
for (let i = 0; i < N; ++i) {
let tmp = random.key({99: 0, 100: 0, 101: 0}) - 99;
if (tmp < 0) throw "random.key() < lower bound";
if (tmp >= bins.length) throw "random.key() > upper bound";
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.bool() distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 3.84; // quantile of chi-square dist. k=1, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(2);
for (let i = 0; i < N; ++i) {
let tmp = random.bool();
if (tmp === true)
tmp = 1;
else if (tmp === false)
tmp = 0;
else
assert.ok(false, "unexpected random.bool() result: " + tmp);
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 1)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.pick() cases", function(assert) {
random.init(Math.random() * 0x100000000);
for (let i = 0; i < 100; ++i) {
let tmp = Math.random();
assert.equal(tmp, random.pick(tmp));
}
for (let i = 0; i < 100; ++i) {
let tmp = (Math.random() * 100) >>> 0;
assert.equal(tmp, random.pick(tmp));
}
for (let i = 0; i < 100; ++i) {
let tmp = Math.random() + "";
assert.equal(tmp, random.pick(tmp));
}
for (let i = 0; i < 100; ++i) {
let tmp = Math.random();
assert.equal(tmp, random.pick([tmp]));
}
for (let i = 0; i < 100; ++i) {
let tmp = Math.random();
assert.equal(tmp, random.pick(function(){ return tmp; }));
}
for (let i = 0; i < 100; ++i) {
let tmp = Math.random();
assert.equal(tmp, random.pick(function(){ return [tmp]; }));
}
});
QUnit.test("random.pick() with equal distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
for (let i = 0; i < N; ++i) {
let tmp = random.pick([0, [1, 1], function(){ return 2; }]);
if (tmp < 0) throw "random.pick() < lower bound";
if (tmp >= bins.length) throw "random.pick() > upper bound";
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.pick() with unequal distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
for (let i = 0; i < N; ++i) {
let tmp = random.pick([[0, 1], [1], function(){ return [2]; }]);
if (tmp < 0) throw "random.pick() < lower bound";
if (tmp >= bins.length) throw "random.pick() > upper bound";
++bins[tmp];
}
let xsq = Math.pow(bins[0] - N / 6, 2) / (N / 6) + Math.pow(bins[1] - N / 2, 2) / (N / 2) + Math.pow(bins[2] - N / 3, 2) / (N / 3);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.chance(2) distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 3.84; // quantile of chi-square dist. k=1, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(2);
for (let i = 0; i < N; ++i) {
let tmp = random.chance(2);
if (tmp === true)
tmp = 1;
else if (tmp === false)
tmp = 0;
else
assert.ok(false, "unexpected random.chance() result: " + tmp);
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 1)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.chance(undefined) distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 3.84; // quantile of chi-square dist. k=1, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(2);
for (let i = 0; i < N; ++i) {
let tmp = random.chance();
if (tmp === true)
tmp = 1;
else if (tmp === false)
tmp = 0;
else
assert.ok(false, "unexpected random.chance() result: " + tmp);
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 1)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.chance(3) distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 3.84; // quantile of chi-square dist. k=1, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(2);
for (let i = 0; i < N; ++i) {
let tmp = random.chance(3);
if (tmp === true)
tmp = 0;
else if (tmp === false)
tmp = 1;
else
assert.ok(false, "unexpected random.chance() result: " + tmp);
++bins[tmp];
}
let xsq = Math.pow(bins[0] - (N / 3), 2) / (N / 3) + Math.pow(bins[1] - (2 * N / 3), 2) / (2 * N / 3);
/*
* XSQ = scipy.stats.chi2.isf(.05, 1)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.chance(1000) distribution", function(assert) {
const N = 1e6, TRIES = 3, XSQ = 3.84; // quantile of chi-square dist. k=1, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(2);
for (let i = 0; i < N; ++i) {
let tmp = random.chance(1000);
if (tmp === true)
tmp = 0;
else if (tmp === false)
tmp = 1;
else
assert.ok(false, "unexpected random.chance() result: " + tmp);
++bins[tmp];
}
let xsq = Math.pow(bins[0] - (N / 1000), 2) / (N / 1000) + Math.pow(bins[1] - (999 * N / 1000), 2) / (999 * N / 1000);
/*
* XSQ = scipy.stats.chi2.isf(.05, 1)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.choose() with equal distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
for (let i = 0; i < N; ++i) {
let tmp = random.choose([[1, 0], [1, 1], [1, 2]]);
if (tmp >= bins.length) throw "random.choose() > upper bound";
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.choose() with unequal distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
for (let i = 0; i < N; ++i) {
let tmp = random.choose([[1, 0], [2, 1], [1, 2]]);
if (tmp >= bins.length) throw "random.choose() > upper bound";
++bins[tmp];
}
let xsq = Math.pow(bins[0] - N / 4, 2) / (N / 4) + Math.pow(bins[1] - N / 2, 2) / (N / 2) + Math.pow(bins[2] - N / 4, 2) / (N / 4);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.choose() with unequal distribution and pick", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
for (let i = 0; i < N; ++i) {
let tmp = random.choose([[1, 0], [2, [1, 2]], [1, function(){ return 2; }]]);
if (tmp >= bins.length) throw "random.choose() > upper bound";
++bins[tmp];
}
let xsq = Math.pow(bins[0] - N / 4, 2) / (N / 4) + Math.pow(bins[1] - N / 4, 2) / (N / 4) + Math.pow(bins[2] - N / 2, 2) / (N / 2);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.choose(flat) with unequal distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
for (let i = 0; i < N; ++i) {
let tmp = random.choose([[1, 0], [2, 1], [1, 2]], true);
if (tmp >= bins.length) throw "random.choose() > upper bound";
++bins[tmp];
}
let xsq = Math.pow(bins[0] - N / 4, 2) / (N / 4) + Math.pow(bins[1] - N / 2, 2) / (N / 2) + Math.pow(bins[2] - N / 4, 2) / (N / 4);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.choose(flat) equal distribution with types not picked", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
const v1 = 1, v2 = [12], v3 = function(){};
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
for (let i = 0; i < N; ++i) {
let tmp = random.choose([[1, v1], [1, v2], [1, v3]], true);
if (tmp === v1)
tmp = 0;
else if (tmp === v2)
tmp = 1;
else if (tmp === v3)
tmp = 2;
else
assert.ok(false, "unexpected random.choose() result: " + tmp);
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.weighted() with equal distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
for (let i = 0; i < N; ++i) {
let tmp = random.item(random.weighted([{w: 1, v: 0}, {w: 1, v: 1}, {w: 1, v: 2}]));
if (tmp >= bins.length) throw "random.weighted() > upper bound";
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.weighted() with unequal distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
for (let i = 0; i < N; ++i) {
let tmp = random.item(random.weighted([{w: 1, v: 0}, {w: 2, v: 1}, {w: 1, v: 2}]));
if (tmp >= bins.length) throw "random.weighted() > upper bound";
++bins[tmp];
}
let xsq = Math.pow(bins[0] - N / 4, 2) / (N / 4) + Math.pow(bins[1] - N / 2, 2) / (N / 2) + Math.pow(bins[2] - N / 4, 2) / (N / 4);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.weighted() equal distribution with types not picked", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
const v1 = 1, v2 = [12], v3 = function(){};
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
for (let i = 0; i < N; ++i) {
let tmp = random.item(random.weighted([{w: 1, v: v1}, {w: 1, v: v2}, {w: 1, v: v3}]));
if (tmp === v1)
tmp = 0;
else if (tmp === v2)
tmp = 1;
else if (tmp === v3)
tmp = 2;
else
assert.ok(false, "unexpected random.weighted() result: " + tmp);
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.use() distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 3.84; // quantile of chi-square dist. k=1, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(2);
for (let i = 0; i < N; ++i) {
let rnd = Math.random(), use = random.use(rnd);
if (use === rnd)
use = 1;
else if (use === "")
use = 0;
else
assert.ok(false, "unexpected random.use() result: " + use);
++bins[use];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 1)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.shuffle() distribution", function(assert) {
const N = 1e4, M = 10, TRIES = 3, XSQ = 123.23; // quantile of chi-square dist. k=M*M-1, p=.05
// XXX: shouldn't k be M! ?
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(M * M);
for (let i = 0; i < N; ++i) {
let array = [];
for (let j = 0; j < M; ++j)
array.push(j);
random.shuffle(array);
for (let j = 0; j < M; ++j)
++bins[j * M + array[j]];
}
let xsq = bins.reduce(function(a, v){ let e = N / M; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 99)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.shuffled() distribution", function(assert) {
const N = 1e4, M = 10, TRIES = 3, XSQ = 123.23; // quantile of chi-square dist. k=M*M-1, p=.05
// XXX: shouldn't k be M! ?
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(M * M);
let array_ref = [];
for (let j = 0; j < M; ++j)
array_ref.push(j);
for (let i = 0; i < N; ++i) {
let array = random.shuffled(array_ref);
for (let j = 0; j < M; ++j) {
++bins[j * M + array[j]];
if (array_ref[j] !== j)
throw "array modified";
}
}
let xsq = bins.reduce(function(a, v){ let e = N / M; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 99)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});
QUnit.test("random.subset() with equal distribution", function(assert) {
/*
* this doesn't specify limit, so length distribution should be even, and selections should be even within each length
*/
const N = 1e4, M = 3, TRIES = 3, B0_XSQ = 5.99, B1_XSQ = 15.51, B2_XSQ = 38.89, LEN_XSQ = 7.81; // quantile of chi-square dist. k=[2,8,26,3], p=.05
let bin0_xsq, bin1_xsq, bin2_xsq, length_xsq;
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = [new Uint32Array(3), new Uint32Array(9), new Uint32Array(27)], lengths = new Uint32Array(M+1);
for (let i = 0; i < N; ++i) {
let tmp = random.subset([0, [1, 1], function(){ return 2; }]);
if (tmp.length > M) throw "random.subset() result length > input";
++lengths[tmp.length];
if (tmp.length)
++bins[tmp.length-1][tmp.reduce(function(a, v){ return a * 3 + v; }, 0)];
}
bin0_xsq = bins[0].reduce(function(a, v){ let e = N / (M + 1) / Math.pow(M, 1); return a + Math.pow(v - e, 2) / e; }, 0);
bin1_xsq = bins[1].reduce(function(a, v){ let e = N / (M + 1) / Math.pow(M, 2); return a + Math.pow(v - e, 2) / e; }, 0);
bin2_xsq = bins[2].reduce(function(a, v){ let e = N / (M + 1) / Math.pow(M, 3); return a + Math.pow(v - e, 2) / e; }, 0);
length_xsq = lengths.reduce(function(a, v){ let e = N / (M + 1); return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (bin0_xsq < B0_XSQ && bin1_xsq < B1_XSQ && bin2_xsq < B2_XSQ && length_xsq < LEN_XSQ) {
assert.ok(true, "Expected lengths x^2 to be < " + LEN_XSQ + ", got " + length_xsq + " on attempt #" + (attempt + 1));
assert.ok(true, "Expected length=1 x^2 to be < " + B0_XSQ + ", got " + bin0_xsq + " on attempt #" + (attempt + 1));
assert.ok(true, "Expected length=2 x^2 to be < " + B1_XSQ + ", got " + bin1_xsq + " on attempt #" + (attempt + 1));
assert.ok(true, "Expected length=3 x^2 to be < " + B2_XSQ + ", got " + bin2_xsq + " on attempt #" + (attempt + 1));
return;
}
}
console.log("Expected lengths x^2 to be < " + LEN_XSQ + ", got " + length_xsq);
console.log("Expected length=1 x^2 to be < " + B0_XSQ + ", got " + bin0_xsq);
console.log("Expected length=2 x^2 to be < " + B1_XSQ + ", got " + bin1_xsq);
console.log("Expected length=3 x^2 to be < " + B2_XSQ + ", got " + bin2_xsq);
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq low enough");
});
QUnit.test("random.subset(limit) with equal distribution", function(assert) {
/*
* limit is specified, so length should always == limit, and selections should be even
*/
const N = 1e4, M = 3, TRIES = 3, B0_XSQ = 5.99, B1_XSQ = 15.51, B2_XSQ = 38.89, B3_XSQ = 101.88; // quantile of chi-square dist. k=[2,8,26,80], p=.05
let bin0_xsq, bin1_xsq, bin2_xsq, bin3_xsq;
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < 100; ++attempt) {
if (random.subset([1,2,3], 0).length !== 0) throw "random.subset(..., 0) returned non-empty array";
}
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = [new Uint32Array(3), new Uint32Array(9), new Uint32Array(27), new Uint32Array(81)];
for (let i = 0; i < N; ++i) {
let tmp = random.subset([0, 1, 2], 1);
if (tmp.length !== 1) throw "random.subset() result length != limit";
++bins[0][tmp.reduce(function(a, v){ return a * 3 + v; }, 0)];
tmp = random.subset([0, 1, 2], 2);
if (tmp.length !== 2) throw "random.subset() result length != limit";
++bins[1][tmp.reduce(function(a, v){ return a * 3 + v; }, 0)];
tmp = random.subset([0, 1, 2], 3);
if (tmp.length !== 3) throw "random.subset() result length != limit";
++bins[2][tmp.reduce(function(a, v){ return a * 3 + v; }, 0)];
tmp = random.subset([0, 1, 2], 4);
if (tmp.length !== 4) throw "random.subset() result length != limit";
++bins[3][tmp.reduce(function(a, v){ return a * 3 + v; }, 0)];
}
bin0_xsq = bins[0].reduce(function(a, v){ let e = N / Math.pow(M, 1); return a + Math.pow(v - e, 2) / e; }, 0);
bin1_xsq = bins[1].reduce(function(a, v){ let e = N / Math.pow(M, 2); return a + Math.pow(v - e, 2) / e; }, 0);
bin2_xsq = bins[2].reduce(function(a, v){ let e = N / Math.pow(M, 3); return a + Math.pow(v - e, 2) / e; }, 0);
bin3_xsq = bins[3].reduce(function(a, v){ let e = N / Math.pow(M, 4); return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (bin0_xsq < B0_XSQ && bin1_xsq < B1_XSQ && bin2_xsq < B2_XSQ && bin3_xsq < B3_XSQ) {
assert.ok(true, "Expected length=1 x^2 to be < " + B0_XSQ + ", got " + bin0_xsq + " on attempt #" + (attempt + 1));
assert.ok(true, "Expected length=2 x^2 to be < " + B1_XSQ + ", got " + bin1_xsq);
assert.ok(true, "Expected length=3 x^2 to be < " + B2_XSQ + ", got " + bin2_xsq);
assert.ok(true, "Expected length=4 x^2 to be < " + B3_XSQ + ", got " + bin3_xsq);
return;
}
}
console.log("Expected length=1 x^2 to be < " + B0_XSQ + ", got " + bin0_xsq);
console.log("Expected length=2 x^2 to be < " + B1_XSQ + ", got " + bin1_xsq);
console.log("Expected length=3 x^2 to be < " + B2_XSQ + ", got " + bin2_xsq);
console.log("Expected length=4 x^2 to be < " + B3_XSQ + ", got " + bin3_xsq);
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq low enough");
});
QUnit.test("random.pop() distribution", function(assert) {
const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05
let tries = [];
random.init(Math.random() * 0x100000000);
for (let attempt = 0; attempt < TRIES; ++attempt) {
let bins = new Uint32Array(3);
const orig = [99, 100, 101];
for (let i = 0; i < N; ++i) {
let arr = orig.slice(), tmp = random.pop(arr) - 99;
if (tmp < 0) throw "random.pop() < lower bound";
if (tmp >= bins.length) throw "random.pop() > upper bound";
if (arr.length !== 2) throw "random.pop() did not pop";
if (arr.reduce(function(a, v){ return a + v; }, tmp) !== 201) throw "random.pop() sum error";
++bins[tmp];
}
let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0);
/*
* XSQ = scipy.stats.chi2.isf(.05, 2)
* if xsq > XSQ, the result is biased at 95% significance
*/
if (xsq < XSQ) {
assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1));
return;
}
tries.push(xsq);
}
assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries);
});