/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ QUnit.test("random.init() is required", function(assert) { assert.throws(random.number, /undefined/, "twister should be uninitialized before random.init()"); random.init(1); random.number(); }); QUnit.test("random.number() corner cases", function(assert) { random.init(Math.random() * 0x100000000); let sum = 0; for (let i = 0; i < 100; ++i) sum += random.number(0); assert.equal(sum, 0); for (let i = 0; i < 100; ++i) sum += random.number(1); assert.equal(sum, 0); let bins = new Uint32Array(2); for (let i = 0; i < 100; ++i) ++bins[random.number(2)]; assert.equal(bins[0] + bins[1], 100); assert.ok(bins[0] > 20); sum = 0; for (let i = 0; i < 15; ++i) sum |= random.number(); assert.equal(sum>>>0, 0xFFFFFFFF); }); QUnit.test("random.number() uniform distribution", function(assert) { const N = Math.pow(2, 17), TRIES = 3, XSQ = 564.7; // quantile of chi-square dist. k=511, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(512); for (let i = 0; i < N; ++i) { let tmp = random.number(bins.length); if (tmp >= bins.length) throw "random.number() >= limit"; ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 511) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.float() uniform distribution", function(assert) { const N = Math.pow(2, 17), TRIES = 3, XSQ = 564.7; // quantile of chi-square dist. k=511, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(512); for (let i = 0; i < N; ++i) { let tmp = (random.float() * bins.length) >>> 0; if (tmp >= bins.length) throw "random.float() >= 1.0"; ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 511) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.range() uniform distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 66.34; // quantile of chi-square dist. k=49, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(50); for (let i = 0; i < N; ++i) { let tmp = random.range(0, bins.length - 1); if (tmp >= bins.length) throw "random.range() > upper bound"; ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 49) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.range() uniform distribution with offset", function(assert) { const N = 1e4, TRIES = 3, XSQ = 66.34; // quantile of chi-square dist. k=49, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(50); for (let i = 0; i < N; ++i) { let tmp = random.range(10, 10 + bins.length - 1) - 10; if (tmp < 0) throw "random.range() < lower bound"; if (tmp >= bins.length) throw "random.range() > upper bound"; ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 49) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.range() PRNG reproducibility", function(assert) { let seed, result1, result2; seed = Math.random() * 0x100000000; for (let t = 0; t < 50; ++t) { random.init(seed); result1 = random.range(1, 20); for (let i = 0; i < 5; ++i) { random.init(seed); result2 = random.range(1, 20); assert.equal(result1, result2, "both results are the same") } seed = random.number(); } }); QUnit.test("random.ludOneTo() distribution", function(assert) { const N = 1e5, TRIES = 3, XSQ = 123.22; // quantile of chi-square dist. k=99, p=.05 let dist = new Uint32Array(100), tries = []; random.init(Math.random() * 0x100000000); /* build the ideal distribution for comparison * I thought this would be the PDF of the log-normal distribution, but I couldn't get mu & sigma figured out? */ for (let i = 0; i < (100 * dist.length); ++i) { dist[Math.floor(Math.exp(i / (100*dist.length) * Math.log(dist.length)))] += N / (dist.length * 100); } assert.equal(dist[0], 0); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(dist.length), xsq = 0; for (let i = 0; i < N; ++i) { let tmp = random.ludOneTo(bins.length)>>>0; if (tmp >= bins.length) throw "random.ludOneTo() > upper bound"; // this could happen.. ++bins[tmp]; } assert.equal(bins[0], 0); for (let i = 1; i < bins.length; ++i) { xsq += Math.pow(bins[i] - dist[i], 2) / dist[i]; } /* * XSQ = scipy.stats.chi2.isf(.05, 99) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.item() exception cases", function(assert) { assert.throws(random.item, /received an invalid object/); assert.throws(function(){ return random.item(1); }, /received an invalid object/); assert.throws(function(){ return random.item("1"); }, /received an invalid object/); assert.throws(function(){ return random.item({}); }, /received an invalid object/); }); QUnit.test("random.item() distribution with list", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); for (let i = 0; i < N; ++i) { let tmp = random.item([99, 100, 101]) - 99; if (tmp < 0) throw "random.item() < lower bound"; if (tmp >= bins.length) throw "random.item() > upper bound"; ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.key() distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); for (let i = 0; i < N; ++i) { let tmp = random.key({99: 0, 100: 0, 101: 0}) - 99; if (tmp < 0) throw "random.key() < lower bound"; if (tmp >= bins.length) throw "random.key() > upper bound"; ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.bool() distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 3.84; // quantile of chi-square dist. k=1, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(2); for (let i = 0; i < N; ++i) { let tmp = random.bool(); if (tmp === true) tmp = 1; else if (tmp === false) tmp = 0; else assert.ok(false, "unexpected random.bool() result: " + tmp); ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 1) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.pick() cases", function(assert) { random.init(Math.random() * 0x100000000); for (let i = 0; i < 100; ++i) { let tmp = Math.random(); assert.equal(tmp, random.pick(tmp)); } for (let i = 0; i < 100; ++i) { let tmp = (Math.random() * 100) >>> 0; assert.equal(tmp, random.pick(tmp)); } for (let i = 0; i < 100; ++i) { let tmp = Math.random() + ""; assert.equal(tmp, random.pick(tmp)); } for (let i = 0; i < 100; ++i) { let tmp = Math.random(); assert.equal(tmp, random.pick([tmp])); } for (let i = 0; i < 100; ++i) { let tmp = Math.random(); assert.equal(tmp, random.pick(function(){ return tmp; })); } for (let i = 0; i < 100; ++i) { let tmp = Math.random(); assert.equal(tmp, random.pick(function(){ return [tmp]; })); } }); QUnit.test("random.pick() with equal distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); for (let i = 0; i < N; ++i) { let tmp = random.pick([0, [1, 1], function(){ return 2; }]); if (tmp < 0) throw "random.pick() < lower bound"; if (tmp >= bins.length) throw "random.pick() > upper bound"; ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.pick() with unequal distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); for (let i = 0; i < N; ++i) { let tmp = random.pick([[0, 1], [1], function(){ return [2]; }]); if (tmp < 0) throw "random.pick() < lower bound"; if (tmp >= bins.length) throw "random.pick() > upper bound"; ++bins[tmp]; } let xsq = Math.pow(bins[0] - N / 6, 2) / (N / 6) + Math.pow(bins[1] - N / 2, 2) / (N / 2) + Math.pow(bins[2] - N / 3, 2) / (N / 3); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.chance(2) distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 3.84; // quantile of chi-square dist. k=1, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(2); for (let i = 0; i < N; ++i) { let tmp = random.chance(2); if (tmp === true) tmp = 1; else if (tmp === false) tmp = 0; else assert.ok(false, "unexpected random.chance() result: " + tmp); ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 1) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.chance(undefined) distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 3.84; // quantile of chi-square dist. k=1, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(2); for (let i = 0; i < N; ++i) { let tmp = random.chance(); if (tmp === true) tmp = 1; else if (tmp === false) tmp = 0; else assert.ok(false, "unexpected random.chance() result: " + tmp); ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 1) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.chance(3) distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 3.84; // quantile of chi-square dist. k=1, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(2); for (let i = 0; i < N; ++i) { let tmp = random.chance(3); if (tmp === true) tmp = 0; else if (tmp === false) tmp = 1; else assert.ok(false, "unexpected random.chance() result: " + tmp); ++bins[tmp]; } let xsq = Math.pow(bins[0] - (N / 3), 2) / (N / 3) + Math.pow(bins[1] - (2 * N / 3), 2) / (2 * N / 3); /* * XSQ = scipy.stats.chi2.isf(.05, 1) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.chance(1000) distribution", function(assert) { const N = 1e6, TRIES = 3, XSQ = 3.84; // quantile of chi-square dist. k=1, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(2); for (let i = 0; i < N; ++i) { let tmp = random.chance(1000); if (tmp === true) tmp = 0; else if (tmp === false) tmp = 1; else assert.ok(false, "unexpected random.chance() result: " + tmp); ++bins[tmp]; } let xsq = Math.pow(bins[0] - (N / 1000), 2) / (N / 1000) + Math.pow(bins[1] - (999 * N / 1000), 2) / (999 * N / 1000); /* * XSQ = scipy.stats.chi2.isf(.05, 1) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.choose() with equal distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); for (let i = 0; i < N; ++i) { let tmp = random.choose([[1, 0], [1, 1], [1, 2]]); if (tmp >= bins.length) throw "random.choose() > upper bound"; ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.choose() with unequal distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); for (let i = 0; i < N; ++i) { let tmp = random.choose([[1, 0], [2, 1], [1, 2]]); if (tmp >= bins.length) throw "random.choose() > upper bound"; ++bins[tmp]; } let xsq = Math.pow(bins[0] - N / 4, 2) / (N / 4) + Math.pow(bins[1] - N / 2, 2) / (N / 2) + Math.pow(bins[2] - N / 4, 2) / (N / 4); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.choose() with unequal distribution and pick", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); for (let i = 0; i < N; ++i) { let tmp = random.choose([[1, 0], [2, [1, 2]], [1, function(){ return 2; }]]); if (tmp >= bins.length) throw "random.choose() > upper bound"; ++bins[tmp]; } let xsq = Math.pow(bins[0] - N / 4, 2) / (N / 4) + Math.pow(bins[1] - N / 4, 2) / (N / 4) + Math.pow(bins[2] - N / 2, 2) / (N / 2); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.choose(flat) with unequal distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); for (let i = 0; i < N; ++i) { let tmp = random.choose([[1, 0], [2, 1], [1, 2]], true); if (tmp >= bins.length) throw "random.choose() > upper bound"; ++bins[tmp]; } let xsq = Math.pow(bins[0] - N / 4, 2) / (N / 4) + Math.pow(bins[1] - N / 2, 2) / (N / 2) + Math.pow(bins[2] - N / 4, 2) / (N / 4); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.choose(flat) equal distribution with types not picked", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 const v1 = 1, v2 = [12], v3 = function(){}; let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); for (let i = 0; i < N; ++i) { let tmp = random.choose([[1, v1], [1, v2], [1, v3]], true); if (tmp === v1) tmp = 0; else if (tmp === v2) tmp = 1; else if (tmp === v3) tmp = 2; else assert.ok(false, "unexpected random.choose() result: " + tmp); ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.weighted() with equal distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); for (let i = 0; i < N; ++i) { let tmp = random.item(random.weighted([{w: 1, v: 0}, {w: 1, v: 1}, {w: 1, v: 2}])); if (tmp >= bins.length) throw "random.weighted() > upper bound"; ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.weighted() with unequal distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); for (let i = 0; i < N; ++i) { let tmp = random.item(random.weighted([{w: 1, v: 0}, {w: 2, v: 1}, {w: 1, v: 2}])); if (tmp >= bins.length) throw "random.weighted() > upper bound"; ++bins[tmp]; } let xsq = Math.pow(bins[0] - N / 4, 2) / (N / 4) + Math.pow(bins[1] - N / 2, 2) / (N / 2) + Math.pow(bins[2] - N / 4, 2) / (N / 4); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.weighted() equal distribution with types not picked", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 const v1 = 1, v2 = [12], v3 = function(){}; let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); for (let i = 0; i < N; ++i) { let tmp = random.item(random.weighted([{w: 1, v: v1}, {w: 1, v: v2}, {w: 1, v: v3}])); if (tmp === v1) tmp = 0; else if (tmp === v2) tmp = 1; else if (tmp === v3) tmp = 2; else assert.ok(false, "unexpected random.weighted() result: " + tmp); ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.use() distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 3.84; // quantile of chi-square dist. k=1, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(2); for (let i = 0; i < N; ++i) { let rnd = Math.random(), use = random.use(rnd); if (use === rnd) use = 1; else if (use === "") use = 0; else assert.ok(false, "unexpected random.use() result: " + use); ++bins[use]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 1) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.shuffle() distribution", function(assert) { const N = 1e4, M = 10, TRIES = 3, XSQ = 123.23; // quantile of chi-square dist. k=M*M-1, p=.05 // XXX: shouldn't k be M! ? let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(M * M); for (let i = 0; i < N; ++i) { let array = []; for (let j = 0; j < M; ++j) array.push(j); random.shuffle(array); for (let j = 0; j < M; ++j) ++bins[j * M + array[j]]; } let xsq = bins.reduce(function(a, v){ let e = N / M; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 99) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.shuffled() distribution", function(assert) { const N = 1e4, M = 10, TRIES = 3, XSQ = 123.23; // quantile of chi-square dist. k=M*M-1, p=.05 // XXX: shouldn't k be M! ? let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(M * M); let array_ref = []; for (let j = 0; j < M; ++j) array_ref.push(j); for (let i = 0; i < N; ++i) { let array = random.shuffled(array_ref); for (let j = 0; j < M; ++j) { ++bins[j * M + array[j]]; if (array_ref[j] !== j) throw "array modified"; } } let xsq = bins.reduce(function(a, v){ let e = N / M; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 99) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); }); QUnit.test("random.subset() with equal distribution", function(assert) { /* * this doesn't specify limit, so length distribution should be even, and selections should be even within each length */ const N = 1e4, M = 3, TRIES = 3, B0_XSQ = 5.99, B1_XSQ = 15.51, B2_XSQ = 38.89, LEN_XSQ = 7.81; // quantile of chi-square dist. k=[2,8,26,3], p=.05 let bin0_xsq, bin1_xsq, bin2_xsq, length_xsq; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = [new Uint32Array(3), new Uint32Array(9), new Uint32Array(27)], lengths = new Uint32Array(M+1); for (let i = 0; i < N; ++i) { let tmp = random.subset([0, [1, 1], function(){ return 2; }]); if (tmp.length > M) throw "random.subset() result length > input"; ++lengths[tmp.length]; if (tmp.length) ++bins[tmp.length-1][tmp.reduce(function(a, v){ return a * 3 + v; }, 0)]; } bin0_xsq = bins[0].reduce(function(a, v){ let e = N / (M + 1) / Math.pow(M, 1); return a + Math.pow(v - e, 2) / e; }, 0); bin1_xsq = bins[1].reduce(function(a, v){ let e = N / (M + 1) / Math.pow(M, 2); return a + Math.pow(v - e, 2) / e; }, 0); bin2_xsq = bins[2].reduce(function(a, v){ let e = N / (M + 1) / Math.pow(M, 3); return a + Math.pow(v - e, 2) / e; }, 0); length_xsq = lengths.reduce(function(a, v){ let e = N / (M + 1); return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (bin0_xsq < B0_XSQ && bin1_xsq < B1_XSQ && bin2_xsq < B2_XSQ && length_xsq < LEN_XSQ) { assert.ok(true, "Expected lengths x^2 to be < " + LEN_XSQ + ", got " + length_xsq + " on attempt #" + (attempt + 1)); assert.ok(true, "Expected length=1 x^2 to be < " + B0_XSQ + ", got " + bin0_xsq + " on attempt #" + (attempt + 1)); assert.ok(true, "Expected length=2 x^2 to be < " + B1_XSQ + ", got " + bin1_xsq + " on attempt #" + (attempt + 1)); assert.ok(true, "Expected length=3 x^2 to be < " + B2_XSQ + ", got " + bin2_xsq + " on attempt #" + (attempt + 1)); return; } } console.log("Expected lengths x^2 to be < " + LEN_XSQ + ", got " + length_xsq); console.log("Expected length=1 x^2 to be < " + B0_XSQ + ", got " + bin0_xsq); console.log("Expected length=2 x^2 to be < " + B1_XSQ + ", got " + bin1_xsq); console.log("Expected length=3 x^2 to be < " + B2_XSQ + ", got " + bin2_xsq); assert.ok(false, "Failed in " + TRIES + " attempts to get xsq low enough"); }); QUnit.test("random.subset(limit) with equal distribution", function(assert) { /* * limit is specified, so length should always == limit, and selections should be even */ const N = 1e4, M = 3, TRIES = 3, B0_XSQ = 5.99, B1_XSQ = 15.51, B2_XSQ = 38.89, B3_XSQ = 101.88; // quantile of chi-square dist. k=[2,8,26,80], p=.05 let bin0_xsq, bin1_xsq, bin2_xsq, bin3_xsq; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < 100; ++attempt) { if (random.subset([1,2,3], 0).length !== 0) throw "random.subset(..., 0) returned non-empty array"; } for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = [new Uint32Array(3), new Uint32Array(9), new Uint32Array(27), new Uint32Array(81)]; for (let i = 0; i < N; ++i) { let tmp = random.subset([0, 1, 2], 1); if (tmp.length !== 1) throw "random.subset() result length != limit"; ++bins[0][tmp.reduce(function(a, v){ return a * 3 + v; }, 0)]; tmp = random.subset([0, 1, 2], 2); if (tmp.length !== 2) throw "random.subset() result length != limit"; ++bins[1][tmp.reduce(function(a, v){ return a * 3 + v; }, 0)]; tmp = random.subset([0, 1, 2], 3); if (tmp.length !== 3) throw "random.subset() result length != limit"; ++bins[2][tmp.reduce(function(a, v){ return a * 3 + v; }, 0)]; tmp = random.subset([0, 1, 2], 4); if (tmp.length !== 4) throw "random.subset() result length != limit"; ++bins[3][tmp.reduce(function(a, v){ return a * 3 + v; }, 0)]; } bin0_xsq = bins[0].reduce(function(a, v){ let e = N / Math.pow(M, 1); return a + Math.pow(v - e, 2) / e; }, 0); bin1_xsq = bins[1].reduce(function(a, v){ let e = N / Math.pow(M, 2); return a + Math.pow(v - e, 2) / e; }, 0); bin2_xsq = bins[2].reduce(function(a, v){ let e = N / Math.pow(M, 3); return a + Math.pow(v - e, 2) / e; }, 0); bin3_xsq = bins[3].reduce(function(a, v){ let e = N / Math.pow(M, 4); return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (bin0_xsq < B0_XSQ && bin1_xsq < B1_XSQ && bin2_xsq < B2_XSQ && bin3_xsq < B3_XSQ) { assert.ok(true, "Expected length=1 x^2 to be < " + B0_XSQ + ", got " + bin0_xsq + " on attempt #" + (attempt + 1)); assert.ok(true, "Expected length=2 x^2 to be < " + B1_XSQ + ", got " + bin1_xsq); assert.ok(true, "Expected length=3 x^2 to be < " + B2_XSQ + ", got " + bin2_xsq); assert.ok(true, "Expected length=4 x^2 to be < " + B3_XSQ + ", got " + bin3_xsq); return; } } console.log("Expected length=1 x^2 to be < " + B0_XSQ + ", got " + bin0_xsq); console.log("Expected length=2 x^2 to be < " + B1_XSQ + ", got " + bin1_xsq); console.log("Expected length=3 x^2 to be < " + B2_XSQ + ", got " + bin2_xsq); console.log("Expected length=4 x^2 to be < " + B3_XSQ + ", got " + bin3_xsq); assert.ok(false, "Failed in " + TRIES + " attempts to get xsq low enough"); }); QUnit.test("random.pop() distribution", function(assert) { const N = 1e4, TRIES = 3, XSQ = 5.99; // quantile of chi-square dist. k=2, p=.05 let tries = []; random.init(Math.random() * 0x100000000); for (let attempt = 0; attempt < TRIES; ++attempt) { let bins = new Uint32Array(3); const orig = [99, 100, 101]; for (let i = 0; i < N; ++i) { let arr = orig.slice(), tmp = random.pop(arr) - 99; if (tmp < 0) throw "random.pop() < lower bound"; if (tmp >= bins.length) throw "random.pop() > upper bound"; if (arr.length !== 2) throw "random.pop() did not pop"; if (arr.reduce(function(a, v){ return a + v; }, tmp) !== 201) throw "random.pop() sum error"; ++bins[tmp]; } let xsq = bins.reduce(function(a, v){ let e = N / bins.length; return a + Math.pow(v - e, 2) / e; }, 0); /* * XSQ = scipy.stats.chi2.isf(.05, 2) * if xsq > XSQ, the result is biased at 95% significance */ if (xsq < XSQ) { assert.ok(true, "Expected x^2 to be < " + XSQ + ", got " + xsq + " on attempt #" + (attempt + 1)); return; } tries.push(xsq); } assert.ok(false, "Failed in " + TRIES + " attempts to get xsq lower than " + XSQ + ": "+ tries); });