draw2d/raster/fillerAA.go
2015-04-19 17:14:42 +02:00

320 lines
9.5 KiB
Go

// Copyright 2011 The draw2d Authors. All rights reserved.
// created: 27/05/2011 by Laurent Le Goff
package raster
import (
"image"
"image/color"
"unsafe"
)
const (
SUBPIXEL_SHIFT = 3
SUBPIXEL_COUNT = 1 << SUBPIXEL_SHIFT
)
var SUBPIXEL_OFFSETS = SUBPIXEL_OFFSETS_SAMPLE_8_FIXED
type SUBPIXEL_DATA uint8
type NON_ZERO_MASK_DATA_UNIT uint8
type Rasterizer8BitsSample struct {
MaskBuffer []SUBPIXEL_DATA
WindingBuffer []NON_ZERO_MASK_DATA_UNIT
Width int
BufferWidth int
Height int
ClipBound [4]float64
RemappingMatrix [6]float64
}
/* width and height define the maximum output size for the filler.
* The filler will output to larger bitmaps as well, but the output will
* be cropped.
*/
func NewRasterizer8BitsSample(width, height int) *Rasterizer8BitsSample {
var r Rasterizer8BitsSample
// Scale the coordinates by SUBPIXEL_COUNT in vertical direction
// The sampling point for the sub-pixel is at the top right corner. This
// adjustment moves it to the pixel center.
r.RemappingMatrix = [6]float64{1, 0, 0, SUBPIXEL_COUNT, 0.5 / SUBPIXEL_COUNT, -0.5 * SUBPIXEL_COUNT}
r.Width = width
r.Height = height
// The buffer used for filling needs to be one pixel wider than the bitmap.
// This is because the end flag that turns the fill of is the first pixel
// after the actually drawn edge.
r.BufferWidth = width + 1
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*height*SUBPIXEL_COUNT)
r.ClipBound = clip(0, 0, width, height, SUBPIXEL_COUNT)
return &r
}
func clip(x, y, width, height, scale int) [4]float64 {
var clipBound [4]float64
offset := 0.99 / float64(scale)
clipBound[0] = float64(x) + offset
clipBound[2] = float64(x+width) - offset
clipBound[1] = float64(y * scale)
clipBound[3] = float64((y + height) * scale)
return clipBound
}
func intersect(r1, r2 [4]float64) [4]float64 {
if r1[0] < r2[0] {
r1[0] = r2[0]
}
if r1[2] > r2[2] {
r1[2] = r2[2]
}
if r1[0] > r1[2] {
r1[0] = r1[2]
}
if r1[1] < r2[1] {
r1[1] = r2[1]
}
if r1[3] > r2[3] {
r1[3] = r2[3]
}
if r1[1] > r1[3] {
r1[1] = r1[3]
}
return r1
}
func (r *Rasterizer8BitsSample) RenderEvenOdd(img *image.RGBA, color *color.RGBA, polygon *Polygon, tr [6]float64) {
// memset 0 the mask buffer
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
// inline matrix multiplication
transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
}
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound)
p := 0
l := len(*polygon) / 2
var edges [32]PolygonEdge
for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ {
r.addEvenOddEdge(&edges[k])
}
p += 16
}
r.fillEvenOdd(img, color, clipRect)
}
//! Adds an edge to be used with even-odd fill.
func (r *Rasterizer8BitsSample) addEvenOddEdge(edge *PolygonEdge) {
x := Fix(edge.X * FIXED_FLOAT_COEF)
slope := Fix(edge.Slope * FIXED_FLOAT_COEF)
slopeFix := Fix(0)
if edge.LastLine-edge.FirstLine >= SLOPE_FIX_STEP {
slopeFix = Fix(edge.Slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) - slope<<SLOPE_FIX_SHIFT
}
var mask SUBPIXEL_DATA
var ySub uint32
var xp, yLine int
for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = uint32(y & (SUBPIXEL_COUNT - 1))
xp = int((x + SUBPIXEL_OFFSETS[ySub]) >> FIXED_SHIFT)
mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] ^= mask
x += slope
if y&SLOPE_FIX_MASK == 0 {
x += slopeFix
}
}
}
//! Adds an edge to be used with non-zero winding fill.
func (r *Rasterizer8BitsSample) addNonZeroEdge(edge *PolygonEdge) {
x := Fix(edge.X * FIXED_FLOAT_COEF)
slope := Fix(edge.Slope * FIXED_FLOAT_COEF)
slopeFix := Fix(0)
if edge.LastLine-edge.FirstLine >= SLOPE_FIX_STEP {
slopeFix = Fix(edge.Slope*SLOPE_FIX_STEP*FIXED_FLOAT_COEF) - slope<<SLOPE_FIX_SHIFT
}
var mask SUBPIXEL_DATA
var ySub uint32
var xp, yLine int
winding := NON_ZERO_MASK_DATA_UNIT(edge.Winding)
for y := edge.FirstLine; y <= edge.LastLine; y++ {
ySub = uint32(y & (SUBPIXEL_COUNT - 1))
xp = int((x + SUBPIXEL_OFFSETS[ySub]) >> FIXED_SHIFT)
mask = SUBPIXEL_DATA(1 << ySub)
yLine = y >> SUBPIXEL_SHIFT
r.MaskBuffer[yLine*r.BufferWidth+xp] |= mask
r.WindingBuffer[(yLine*r.BufferWidth+xp)*SUBPIXEL_COUNT+int(ySub)] += winding
x += slope
if y&SLOPE_FIX_MASK == 0 {
x += slopeFix
}
}
}
// Renders the mask to the canvas with even-odd fill.
func (r *Rasterizer8BitsSample) fillEvenOdd(img *image.RGBA, color *color.RGBA, clipBound [4]float64) {
var x, y uint32
minX := uint32(clipBound[0])
maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff
cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride)
var mask SUBPIXEL_DATA
for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:]
mask = 0
for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x]))
mask ^= r.MaskBuffer[y*uint32(r.BufferWidth)+x]
// 8bits
alpha := uint32(coverageTable[mask])
// 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := SUBPIXEL_COUNT - alpha
ct1 := *p & 0xff00ff * invAlpha
ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2
}
}
}
/*
* Renders the polygon with non-zero winding fill.
* param aTarget the target bitmap.
* param aPolygon the polygon to render.
* param aColor the color to be used for rendering.
* param aTransformation the transformation matrix.
*/
func (r *Rasterizer8BitsSample) RenderNonZeroWinding(img *image.RGBA, color *color.RGBA, polygon *Polygon, tr [6]float64) {
r.MaskBuffer = make([]SUBPIXEL_DATA, r.BufferWidth*r.Height)
r.WindingBuffer = make([]NON_ZERO_MASK_DATA_UNIT, r.BufferWidth*r.Height*SUBPIXEL_COUNT)
// inline matrix multiplication
transform := [6]float64{
tr[0]*r.RemappingMatrix[0] + tr[1]*r.RemappingMatrix[2],
tr[1]*r.RemappingMatrix[3] + tr[0]*r.RemappingMatrix[1],
tr[2]*r.RemappingMatrix[0] + tr[3]*r.RemappingMatrix[2],
tr[3]*r.RemappingMatrix[3] + tr[2]*r.RemappingMatrix[1],
tr[4]*r.RemappingMatrix[0] + tr[5]*r.RemappingMatrix[2] + r.RemappingMatrix[4],
tr[5]*r.RemappingMatrix[3] + tr[4]*r.RemappingMatrix[1] + r.RemappingMatrix[5],
}
clipRect := clip(img.Bounds().Min.X, img.Bounds().Min.Y, img.Bounds().Dx(), img.Bounds().Dy(), SUBPIXEL_COUNT)
clipRect = intersect(clipRect, r.ClipBound)
p := 0
l := len(*polygon) / 2
var edges [32]PolygonEdge
for p < l {
edgeCount := polygon.getEdges(p, 16, edges[:], transform, clipRect)
for k := 0; k < edgeCount; k++ {
r.addNonZeroEdge(&edges[k])
}
p += 16
}
r.fillNonZero(img, color, clipRect)
}
//! Renders the mask to the canvas with non-zero winding fill.
func (r *Rasterizer8BitsSample) fillNonZero(img *image.RGBA, color *color.RGBA, clipBound [4]float64) {
var x, y uint32
minX := uint32(clipBound[0])
maxX := uint32(clipBound[2])
minY := uint32(clipBound[1]) >> SUBPIXEL_SHIFT
maxY := uint32(clipBound[3]) >> SUBPIXEL_SHIFT
//pixColor := (uint32(color.R) << 24) | (uint32(color.G) << 16) | (uint32(color.B) << 8) | uint32(color.A)
pixColor := (*uint32)(unsafe.Pointer(color))
cs1 := *pixColor & 0xff00ff
cs2 := *pixColor >> 8 & 0xff00ff
stride := uint32(img.Stride)
var mask SUBPIXEL_DATA
var n uint32
var values [SUBPIXEL_COUNT]NON_ZERO_MASK_DATA_UNIT
for n = 0; n < SUBPIXEL_COUNT; n++ {
values[n] = 0
}
for y = minY; y < maxY; y++ {
tp := img.Pix[y*stride:]
mask = 0
for x = minX; x <= maxX; x++ {
p := (*uint32)(unsafe.Pointer(&tp[x]))
temp := r.MaskBuffer[y*uint32(r.BufferWidth)+x]
if temp != 0 {
var bit SUBPIXEL_DATA = 1
for n = 0; n < SUBPIXEL_COUNT; n++ {
if temp&bit != 0 {
t := values[n]
values[n] += r.WindingBuffer[(y*uint32(r.BufferWidth)+x)*SUBPIXEL_COUNT+n]
if (t == 0 || values[n] == 0) && t != values[n] {
mask ^= bit
}
}
bit <<= 1
}
}
// 8bits
alpha := uint32(coverageTable[mask])
// 16bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff])
// 32bits
//alpha := uint32(coverageTable[mask & 0xff] + coverageTable[(mask >> 8) & 0xff] + coverageTable[(mask >> 16) & 0xff] + coverageTable[(mask >> 24) & 0xff])
// alpha is in range of 0 to SUBPIXEL_COUNT
invAlpha := uint32(SUBPIXEL_COUNT) - alpha
ct1 := *p & 0xff00ff * invAlpha
ct2 := *p >> 8 & 0xff00ff * invAlpha
ct1 = (ct1 + cs1*alpha) >> SUBPIXEL_SHIFT & 0xff00ff
ct2 = (ct2 + cs2*alpha) << (8 - SUBPIXEL_SHIFT) & 0xff00ff00
*p = ct1 + ct2
}
}
}